Graphene Nanoribbon Phototransistor: Proposal and Analysis

被引:32
作者
Ryzhii, Victor [1 ,4 ]
Ryzhii, Maxim [1 ,4 ]
Ryabova, Nadezhda [1 ,4 ]
Mitin, Vladimir [2 ]
Otsuji, Taiichi [3 ,4 ]
机构
[1] Univ Aizu, Computat Nanoelect Lab, Fukushima 9658580, Japan
[2] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
[3] Tohoku Univ, Res Inst Elect Commun, Sendai, Miyagi 9808577, Japan
[4] Japan Sci & Technol Agcy, CREST, Tokyo 1070075, Japan
关键词
FIELD-EFFECT TRANSISTORS; GAS;
D O I
10.1143/JJAP.48.04C144
中图分类号
O59 [应用物理学];
学科分类号
摘要
We consider a concept of it graphene nanoribbon phototransistor (GNR-PT) based on an array of GNRs operating as a photodetector of far-infrared (FIR) and terahertz (THz) radiation. The photodetector has the structure of a GNR field effect transistor with the back and relatively short top gates. To calculate the GNR-PT characteristics, we develop an analytical model of the device. This model generalizes the model we proposed previously by accounting for the possibility of not only the thermionic regime but also the tunneling regime of the GNR-PT operation. Using tie developed model, we derive analytical formulas for the source-drain current as a function of the intensity and frequency of the incident radiation and bias voltages, and estimate the detector responsivity. The obtained formulas can be used for detector optimization by varying the dark current, photoelectric current gain, and voltage control of the spectral properties. The dependences of the absorption edge on GNR width and bias voltages can be utilized for the development of multicolor voltage tunable FIR/ THz photodetectors. (C) 2009 The Japan Society of Applied Physics
引用
收藏
页数:5
相关论文
共 21 条
[1]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[2]   SELF-CONSISTENT POLARON SCATTERING RATES IN QUASI-ONE-DIMENSIONAL STRUCTURES [J].
BRIGGS, S ;
MASON, BA ;
LEBURTON, JP .
PHYSICAL REVIEW B, 1989, 40 (17) :12001-12004
[3]   SIZE EFFECTS IN MULTISUBBAND QUANTUM WIRE STRUCTURES [J].
BRIGGS, S ;
LEBURTON, JP .
PHYSICAL REVIEW B, 1988, 38 (12) :8163-8170
[4]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[5]   Simulation of graphene nanoribbon field-effect transistors [J].
Fiori, Gianluca ;
Iannaccone, Giuseppe .
IEEE ELECTRON DEVICE LETTERS, 2007, 28 (08) :760-762
[6]   Role of phonon scattering in carbon nanotube field-effect transistors [J].
Guo, J ;
Lundstrom, M .
APPLIED PHYSICS LETTERS, 2005, 86 (19) :1-3
[7]   Transport measurements across a tunable potential barrier in graphene [J].
Huard, B. ;
Sulpizio, J. A. ;
Stander, N. ;
Todd, K. ;
Yang, B. ;
Goldhaber-Gordon, D. .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[8]   Two-dimensional gas of massless Dirac fermions in graphene [J].
Novoselov, KS ;
Geim, AK ;
Morozov, SV ;
Jiang, D ;
Katsnelson, MI ;
Grigorieva, IV ;
Dubonos, SV ;
Firsov, AA .
NATURE, 2005, 438 (7065) :197-200
[9]   Analysis of graphene nanoribbons as a channel material for field-effect transistors [J].
Obradovic, B ;
Kotlyar, R ;
Heinz, F ;
Matagne, P ;
Rakshit, T ;
Giles, MD ;
Stettler, MA ;
Nikonov, DE .
APPLIED PHYSICS LETTERS, 2006, 88 (14)
[10]   Reentrance effect in a graphene n-p-n junction coupled to a superconductor [J].
Ossipov, A. ;
Titov, M. ;
Beenakker, C. W. J. .
PHYSICAL REVIEW B, 2007, 75 (24)