Numerical algorithm for triphasic model of charged and hydrated soft tissues

被引:13
作者
Hon, YC [1 ]
Lu, MW
Xue, WM
Zhou, X
机构
[1] City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
[2] Natl Tsing Hua Univ, Dept Engn Mech, Hsinchu, Taiwan
[3] Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R China
[4] Beijing Special Engn Design & Res Inst, Beijing, Peoples R China
关键词
radial basis functions; triphasic theory; domain decomposition;
D O I
10.1007/s00466-002-0307-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper devises an efficient numerical algorithm for solving a two-dimensional triphasic model of charged and hydrated soft tissue by using the radial basis functions. The proposed numerical method is applied directly as a simple meshless collocation algorithm to approximate the solution of the governing system of continuity, momentum, and constitutive equations for the triphasic model. Since there is no requirement on meshing, the method can easily be applied to solve problems under complicated geometry. For verification, numerical simulations of stress, strain, and fluid flow patterns for a plane strain and an axisymmetric mechano-electrochemical coupling model with real synovial joint are given respectively. Classical domain decomposition technique is also combined successfully with the proposed method for solving large scale problems with numerical verification given in solving the axisymmetric case.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 41 条
[1]  
Almeida EDGARD S., 1997, Comput Methods Biomech Biomed Engin, V1, P25, DOI 10.1080/01495739708936693
[2]  
Almeida EDGARD S., 1998, Comput Methods Biomech Biomed Engin, V1, P151, DOI 10.1080/01495739708936700
[3]  
[Anonymous], NUMERICAL ANAL
[4]  
DUCHON J, 1977, CONSTRUCTIVE THEORY, V571
[5]   Solving partial differential equations by collocation using radial basis functions [J].
Franke, C ;
Schaback, R .
APPLIED MATHEMATICS AND COMPUTATION, 1998, 93 (01) :73-82
[6]   SCATTERED DATA INTERPOLATION - TESTS OF SOME METHODS [J].
FRANKE, R .
MATHEMATICS OF COMPUTATION, 1982, 38 (157) :181-200
[7]  
Golberg M.A., 1994, BOUNDARY ELEMENTS CO, V5, P57
[8]  
GOLBERG MA, 1997, COMPUT MECH PUBL
[9]   A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: Passive transport and swelling behaviors [J].
Gu, WY ;
Lai, WM ;
Mow, VC .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1998, 120 (02) :169-180
[10]   MULTIQUADRIC EQUATIONS OF TOPOGRAPHY AND OTHER IRREGULAR SURFACES [J].
HARDY, RL .
JOURNAL OF GEOPHYSICAL RESEARCH, 1971, 76 (08) :1905-+