Lessons from Nature: microRNA-based shRNA libraries

被引:181
作者
Chang, Kenneth
Elledge, Stephen J.
Hannon, Gregory J.
机构
[1] Cold Spring Harbor Lab, Howard Hughes Med Inst, Watson Sch Biol Sci, Cold Spring Harbor, NY 11724 USA
[2] Harvard Univ, Sch Med, Dept Genet, Ctr Genet & Genom,Howard Hughes Med Inst, Boston, MA 02115 USA
关键词
D O I
10.1038/NMETH923
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Loss-of-function genetics has proven essential for interrogating the functions of genes and for probing their roles within the complex circuitry of biological pathways. In many systems, technologies allowing the use of such approaches were lacking before the discovery of RNA interference (RNAi). We have constructed first-generation short hairpin RNA (shRNA) libraries modeled after precursor microRNAs (miRNAs) and second-generation libraries modeled after primary miRNA transcripts (the Hannon-Elledge libraries). These libraries were arrayed, sequence-verified, and cover a substantial portion of all known and predicted genes in the human and mouse genomes. Comparison of first- and second-generation libraries indicates that RNAi triggers that enter the RNAi pathway through a more natural route yield more effective silencing. These large-scale resources are functionally versatile, as they can be used in transient and stable studies, and for constitutive or inducible silencing. Library cassettes can be easily shuttled into vectors that contain different promoters and/or that provide different modes of viral delivery.
引用
收藏
页码:707 / 714
页数:8
相关论文
共 38 条
  • [1] MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004)
    Bartel, David P.
    [J]. CELL, 2007, 131 (04) : 11 - 29
  • [2] Role for a bidentate ribonuclease in the initiation step of RNA interference
    Bernstein, E
    Caudy, AA
    Hammond, SM
    Hannon, GJ
    [J]. NATURE, 2001, 409 (6818) : 363 - 366
  • [3] Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs
    Cai, XZ
    Hagedorn, CH
    Cullen, BR
    [J]. RNA, 2004, 10 (12) : 1957 - 1966
  • [4] MicroRNAs modulate hematopoietic lineage differentiation
    Chen, CZ
    Li, L
    Lodish, HF
    Bartel, DP
    [J]. SCIENCE, 2004, 303 (5654) : 83 - 86
  • [5] Processing of primary microRNAs by the Microprocessor complex
    Denli, AM
    Tops, BBJ
    Plasterk, RHA
    Ketting, RF
    Hannon, GJ
    [J]. NATURE, 2004, 432 (7014) : 231 - 235
  • [6] Probing tumor phenotypes using stable and regulated synthetic microRNA precursors
    Dickins, RA
    Hemann, MT
    Zilfou, JT
    Simpson, DR
    Ibarra, I
    Hannon, GJ
    Lowe, SW
    [J]. NATURE GENETICS, 2005, 37 (11) : 1289 - 1295
  • [7] STRUCTURAL ELEMENTS OF ORNITHINE DECARBOXYLASE REQUIRED FOR INTRACELLULAR DEGRADATION AND POLYAMINE-DEPENDENT REGULATION
    GHODA, L
    SIDNEY, D
    MACRAE, M
    COFFINO, P
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (05) : 2178 - 2185
  • [8] The Microprocessor complex mediates the genesis of microRNAs
    Gregory, RI
    Yan, KP
    Amuthan, G
    Chendrimada, T
    Doratotaj, B
    Cooch, N
    Shiekhattar, R
    [J]. NATURE, 2004, 432 (7014) : 235 - 240
  • [9] A species of small antisense RNA in posttranscriptional gene silencing in plants
    Hamilton, AJ
    Baulcombe, DC
    [J]. SCIENCE, 1999, 286 (5441) : 950 - 952
  • [10] Argonaute2, a link between genetic and biochemical analyses of RNAi
    Hammond, SM
    Boettcher, S
    Caudy, AA
    Kobayashi, R
    Hannon, GJ
    [J]. SCIENCE, 2001, 293 (5532) : 1146 - 1150