The empirical valence bond (EVB) model provides an extremely powerful way for modeling and analyzing chemical reactions in solutions and proteins. However, this model is based on the unverified assumption that the off diagonal elements of the EVB Hamiltonian do not change significantly upon transfer of the reacting system from one phase to another. This ad hoc assumption has been rationalized by its consistency with empirically observed linear free energy relationships, as well as by other qualitative considerations. Nevertheless, this assumption has not been rigorously established. The present work explores the validity of the above EVB key assumption by a rigorous numerical approach. This is done by exploiting the ability of the frozen density functional theory (FDFT) and the constrained density functional theory (CDFT) models to generate convenient diabatic states for QM/MM treatments, and thus to examine the relationship between the diabatic and adiabatic surfaces, as well as the corresponding effective off diagonal elements. It is found that, at least for the test case of S(N)2 reactions, the off diagonal element does not change significantly upon moving from the gas phase to solutions and thus the EVB assumption is valid and extremely useful.