Entanglement and quantum phase transition in the extended Hubbard model

被引:394
作者
Gu, SJ [1 ]
Deng, SS
Li, YQ
Lin, HQ
机构
[1] Chinese Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[2] Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Peoples R China
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.93.086402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study quantum entanglement in a one-dimensional correlated fermionic system. Our results show, for the first time, that entanglement can be used to identify quantum phase transitions in fermionic systems.
引用
收藏
页码:086402 / 1
页数:4
相关论文
共 28 条
[1]   Quantum information and computation [J].
Bennett, CH ;
DiVincenzo, DP .
NATURE, 2000, 404 (6775) :247-255
[2]   GROUND-STATE ENERGY OF THE HALF-FILLED ONE-DIMENSIONAL HUBBARD-MODEL [J].
ECONOMOU, EN ;
POULOPOULOS, PN .
PHYSICAL REVIEW B, 1979, 20 (11) :4756-4758
[3]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780
[4]  
Emery V J., 1979, Highly Conducting One-Dimensional Solids, Ved, pp 247
[5]   Entanglement, quantum phase transition, and scaling in the XXZ chain -: art. no. 042330 [J].
Gu, SJ ;
Lin, HQ ;
Li, YQ .
PHYSICAL REVIEW A, 2003, 68 (04) :4
[6]   Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain -: art. no. 107901 [J].
Kamta, GL ;
Starace, AF .
PHYSICAL REVIEW LETTERS, 2002, 88 (10) :4
[7]  
LATORRE JI, QUANTPH0304098
[8]   ABSENCE OF MOTT TRANSITION IN AN EXACT SOLUTION OF SHORT-RANGE 1-BAND MODEL IN 1 DIMENSION [J].
LIEB, EH ;
WU, FY .
PHYSICAL REVIEW LETTERS, 1968, 20 (25) :1445-+
[9]  
Lin HQ, 2000, CHINESE J PHYS, V38, P1
[10]  
LIN HQ, HUBBARD MODEL ITS PH, P315