The use of axial coordination to metalloporphyrins is discussed on the basis of constructing multinuclear complexes. Starting with single metalloporphyrin-ligand complexes where the ligand is designed to bring a functional moiety close to the porphyrin, the discussion further expands to the design, synthesis, and detailed analysis of multiporphyrin assemblies. The porphyrin-as-ligand concept combined with orthogonal binding modes is presented, and selected examples show that in this way a large diversity in multiporphyrin assemblies can be achieved. New emerging concepts such as dynamic combinatorial chemistry, porphyrin-fullerene complexes and porphyrins assembled around gold nanoclusters or on surfaces are presented as well, because these systems are expected to play a leading role in the design of new materials in near future.