Effect of the Hydrophobic Component on the Properties of Sulfonated Poly(arylene ether sulfone)s

被引:110
作者
Bae, Byungchan [1 ]
Miyatake, Kenji [1 ]
Watanabe, Masahiro [1 ]
机构
[1] Yamanashi Univ, Fuel Cell Nanomat Ctr, Kofu, Yamanashi 4008510, Japan
关键词
PROTON-EXCHANGE MEMBRANES; CONDUCTIVE POLYIMIDE ELECTROLYTES; ACID GROUPS; COPOLYMERS; IONOMERS; POLYMERS; KETONE); POLYMERIZATION; NITRILE)S; LONOMERS;
D O I
10.1021/ma8026518
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Four kinds of sulfonated poly(arylene ether sulfone)s containing hydrophobic component of different size was synthesized by the copolymerization of disodium 3,3'-disulfo-4,4'-difluorophenyl sulfone and 4,4'-difluorophenyl sulfone with 2,2-bis(2-hydroxy-5-biphenylyl)propane (SPE1), 4,4'-dihydroxytetraphenylmethane (SPE2), 9,9-bis(4-hydroxyphenyl)fluorene (SPE3), or 2,7-dihydroxynaphthalene (SPE4) under nucleophilic aromatic substitution conditions. The copolymer composition was set at 45-70 mol % of 3,3'-disulfo-4,4'-difluorophenyl sulfone in order to achieve similar ion exchange capacity (ca. 2.0 mequiv/g) for all the sulfonated copolymers SPE1-4. The copolymers were of high molecular weight (M-n = 150-220 kDa; M-w = 310-695 kDa) to give tough and flexible membranes by Solution casting. STEM observation revealed that small hydrophobic components (SPE3 and SPE4) induced larger water cluster than bulky hydrophobic ones (SPE1 and SPE2). The small hydrophobic components induced high proton conductivities and proton diffusion coefficients as well as low water swelling. SPE4 membrane showed the highest proton conductivity at 50-80 degrees C and 10-90% RH among the four SPEs membranes. The smaller hydrophobic component was also effective in terms of gas permeation and mechanical properties for fuel cell applications.
引用
收藏
页码:1873 / 1880
页数:8
相关论文
共 35 条
[1]   Aliphatic/aromatic polyimide lonomers as a proton conductive membrane for fuel cell applications [J].
Asano, N ;
Aoki, M ;
Suzuki, S ;
Miyatake, K ;
Uchida, H ;
Watanabe, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (05) :1762-1769
[2]   Sulfonated poly(arylene ether sulfone) ionomers containing fluorenyl groups for fuel cell applications [J].
Bae, Byungchan ;
Miyatake, Kenji ;
Watanabe, Masahiro .
JOURNAL OF MEMBRANE SCIENCE, 2008, 310 (1-2) :110-118
[3]   Direct synthesis of fully sulfonated polyarylenethioether sulfones as proton-conducting polymers for fuel cells [J].
Bai, Zongwu ;
Dang, Thuy D. .
MACROMOLECULAR RAPID COMMUNICATIONS, 2006, 27 (15) :1271-1277
[4]  
BRUNELLE DJ, 2008, Patent No. 2008005647
[5]   Poly(arylene ether) ionomers containing sulfofluorenyl groups for fuel cell applications [J].
Chikashige, Y ;
Chikyu, Y ;
Miyatake, K ;
Watanabe, M .
MACROMOLECULES, 2005, 38 (16) :7121-7126
[6]   Ionomeric poly(phenylene) prepared by diels-alder polymerization: Synthesis and physical properties of a novel polyelectrolyte [J].
Fujimoto, CH ;
Hickner, MA ;
Cornelius, CJ ;
Loy, DA .
MACROMOLECULES, 2005, 38 (12) :5010-5016
[7]   Low-swelling proton-conducting copoly(aryl ether nitrile)s containing naphthalene structure with sulfonic acid groups meta to the ether linkage [J].
Gao, Y ;
Robertson, GP ;
Guiver, MD ;
Mikhailenko, SD ;
Li, X ;
Kaliaguine, S .
POLYMER, 2006, 47 (03) :808-816
[8]   Multiblock sulfonated-fluorinated poly(arylene ether)s for a proton exchange membrane fuel cell [J].
Ghassemi, H ;
McGrath, JE ;
Zawodzinski, TA .
POLYMER, 2006, 47 (11) :4132-4139
[9]   Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications [J].
Gil, M ;
Ji, XL ;
Li, XF ;
Na, H ;
Hampsey, JE ;
Lu, YF .
JOURNAL OF MEMBRANE SCIENCE, 2004, 234 (1-2) :75-81
[10]   Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes [J].
Guo, QH ;
Pintauro, PN ;
Tang, H ;
O'Connor, S .
JOURNAL OF MEMBRANE SCIENCE, 1999, 154 (02) :175-181