Proteomic analysis of cleavage events reveals a dynamic two-step mechanism for proteolysis of a key parasite adhesive complex

被引:83
作者
Zhou, XW
Blackman, MJ
Howell, SA
Carruthers, VB
机构
[1] Johns Hopkins Bloomberg Sch Publ Hlth, W Harry Feinstone Dept Mol Microbiol & Immunol, Baltimore, MD 21205 USA
[2] Natl Inst Med Res, Div Parasitol, London NW7 1AA, England
关键词
D O I
10.1074/mcp.M300123-MCP200
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The transmembrane micronemal protein MIC2 and its partner M2AP comprise an adhesive complex that is required for rapid invasion of host cells by the obligate intracellular parasite Toxoplasma gondii. Recent studies have shown that the MIC2/M2AP complex undergoes extensive proteolytic processing on the parasite surface during invasion, including primary processing of M2AP by unknown proteases and proteolytic shedding of the complex by an anonymous protease called MPP1. While it was shown that MPP1-mediated cleavage is necessary for efficient invasion, it remained unclear whether the adhesive complex was liberated by juxtamembrane or intramembrane proteolysis. Here, using a three-phase strategy of assigning cleavage sites based on intact matrix-assisted laser desorption/ionization mass followed by confirmation by enzymatic digestion and inhibitor profiling, we demonstrate that M2AP is processed by two parasite-derived proteases called MPP2 and MPP3. We also define the substrate repertoire of MPP2 by two-dimensional differential gel electrophoresis using fluorescent tags. Finally, we use complementary mass spectrometric techniques to unequivocally show that MIC2 is shed by intramembrane cleavage within its anchoring domain. Based on the properties of this cleavage site, we conclude that the sheddase, MPP1, is likely a multipass membrane protease of the Rhomboid family. Our data support a novel two-step proteolysis model that includes primary processing of the MIC2/M2AP complex followed by secondary cleavage to shed the complex from the parasite surface during the final steps of invasion.
引用
收藏
页码:565 / 576
页数:12
相关论文
共 42 条
[1]   CHARACTERIZATION BY TANDEM MASS-SPECTROMETRY OF STRUCTURAL MODIFICATIONS IN PROTEINS [J].
BIEMANN, K ;
SCOBLE, HA .
SCIENCE, 1987, 237 (4818) :992-998
[2]  
Blackman Michael J., 2000, Current Drug Targets, V1, P59, DOI 10.2174/1389450003349461
[3]   The toxoplasma micronemal protein MIC4 is an adhesin composed of six conserved apple domains [J].
Brecht, S ;
Carruthers, VB ;
Ferguson, DJP ;
Giddings, OK ;
Wang, G ;
Jäkle, U ;
Harper, JM ;
Sibley, LD ;
Soldati, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (06) :4119-4127
[4]   C-terminal processing of the toxoplasma protein MIC2 is essential for invasion into host cells [J].
Brossier, F ;
Jewettt, TJ ;
Lovett, JL ;
Sibley, LD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (08) :6229-6234
[5]   Regulated intramembrane proteolysis: A control mechanism conserved from bacteria to humans [J].
Brown, MS ;
Ye, J ;
Rawson, RB ;
Goldstein, JL .
CELL, 2000, 100 (04) :391-398
[6]   A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood [J].
Brown, MS ;
Goldstein, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11041-11048
[7]   Secretion of micronemal proteins is associated with toxoplasma invasion of host cells [J].
Carruthers, VB ;
Giddings, OK ;
Sibley, LD .
CELLULAR MICROBIOLOGY, 1999, 1 (03) :225-235
[8]   The Toxoplasma adhesive protein MIC2 is proteolytically processed at multiple sites by two parasite-derived proteases [J].
Carruthers, VB ;
Sherman, GD ;
Sibley, LD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (19) :14346-14353
[9]  
Carruthers VB, 1997, EUR J CELL BIOL, V73, P114
[10]  
Carruthers Vern B., 1999, Parasitology International, V48, P1