A numerical study of the semi-classical limit of the focusing nonlinear Schrodinger equation

被引:27
作者
Ceniceros, HD
Tian, FR
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
D O I
10.1016/S0375-9601(01)00011-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the solution of the focusing nonlinear Schrodinger equation in the semiclassical limit. Numerical solutions are presented for four different kinds of initial data, of which three are analytic and one is nonanalytic. We verify numerically the weak convergence of the oscillatory solution by examining the strong convergence of the spatial average of the solution. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:25 / 34
页数:10
相关论文
共 33 条
[21]   ANALYTICAL THEORY OF GUIDING-CENTER NONRETURN-TO-ZERO AND RETURN-TO-ZERO SIGNAL TRANSMISSION IN NORMALLY DISPERSIVE NONLINEAR-OPTICAL FIBERS [J].
KODAMA, Y ;
WABNITZ, S .
OPTICS LETTERS, 1995, 20 (22) :2291-2293
[23]   THE SMALL DISPERSION LIMIT OF THE KORTEWEG-DEVRIES EQUATION .1. [J].
LAX, PD ;
LEVERMORE, CD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (03) :253-290
[24]  
LAX PD, 1992, IMPORTANT DEV SOLITO
[25]   On the semiclassical limit of the focusing nonlinear Schrodinger equation [J].
Miller, PD ;
Kamvissis, S .
PHYSICS LETTERS A, 1998, 247 (1-2) :75-86
[26]   MECHANICAL EQUILIBRIUM DETERMINES THE FRACTAL FIBER ARCHITECTURE OF AORTIC HEART-VALVE LEAFLETS [J].
PESKIN, CS ;
MCQUEEN, DM .
AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 266 (01) :H319-H328
[27]   OBSERVATION OF THE FORMATION OF AN OPTICAL-INTENSITY SHOCK AND WAVE BREAKING IN THE NONLINEAR PROPAGATION OF PULSES IN OPTICAL FIBERS [J].
ROTHENBERG, JE ;
GRISCHKOWSKY, D .
PHYSICAL REVIEW LETTERS, 1989, 62 (05) :531-534
[28]  
Sagdeev R. Z., 1966, REV PLASMA PHYS, P23
[29]  
Tian FR, 1999, COMMUN PUR APPL MATH, V52, P655, DOI 10.1002/(SICI)1097-0312(199906)52:6<655::AID-CPA1>3.3.CO
[30]  
2-1