Parametric search made practical

被引:23
作者
van Oostrum, R [1 ]
Veltkamp, RC [1 ]
机构
[1] Univ Utrecht, Inst Comp & Informat Sci, NL-3508 TB Utrecht, Netherlands
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2004年 / 28卷 / 2-3期
关键词
parametric search; implementation;
D O I
10.1016/j.comgeo.2004.03.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show that in sorting-based applications of parametric search, Quicksort can replace the parallel sorting algorithms that are usually advocated. Because of the simplicity of Quicksort, this may lead to applications of parametric search that are not only efficient in theory, but in practice as well. Also, we argue that Cole's optimization of certain parametric-search algorithms may be unnecessary under realistic assumptions about the input. Furthermore, we present a generic, flexible, and easy-to-use framework that greatly simplifies the implementation of algorithms based on parametric search. We use our framework to implement an algorithm that solves the Frechet-distance problem. The implementation based on parametric search is faster than the binary-search approach that is often suggested as a practical replacement for the parametric-search technique. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:75 / 88
页数:14
相关论文
共 18 条
[1]   Efficient algorithms for geometric optimization [J].
Agarwal, PK ;
Sharir, M .
ACM COMPUTING SURVEYS, 1998, 30 (04) :412-458
[2]   SORTING IN C LOG N PARALLEL STEPS [J].
AJTAI, M ;
KOMLOS, J ;
SZEMEREDI, E .
COMBINATORICA, 1983, 3 (01) :1-19
[3]   COMPUTING THE FRECHET DISTANCE BETWEEN 2 POLYGONAL CURVES [J].
ALT, H ;
GODAU, M .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1995, 5 (1-2) :75-91
[4]  
Batcher Kenneth E., 1968, P AFIPS SPRING JOINT, P307, DOI [10.1145/ 1468075.1468121, DOI 10.1145/1468075.1468121]
[5]  
Brönnimann H, 2000, LECT NOTES COMPUT SC, V1766, P206
[6]   Geometric applications of a randomized optimization technique [J].
Chan, TM .
DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 22 (04) :547-567
[7]   Geometric pattern matching under Euclidean motion [J].
Chew, LP ;
Goodrich, MT ;
Huttenlocher, DP ;
Kedem, K ;
Kleinberg, JM ;
Kravets, D .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1997, 7 (1-2) :113-124
[8]   AN OPTIMAL-TIME ALGORITHM FOR SLOPE SELECTION [J].
COLE, R ;
SALOWE, JS ;
STEIGER, WL ;
SZEMEREDI, E .
SIAM JOURNAL ON COMPUTING, 1989, 18 (04) :792-810
[9]   PARALLEL MERGE SORT [J].
COLE, R .
SIAM JOURNAL ON COMPUTING, 1988, 17 (04) :770-785
[10]   SLOWING DOWN SORTING NETWORKS TO OBTAIN FASTER SORTING ALGORITHMS [J].
COLE, R .
JOURNAL OF THE ACM, 1987, 34 (01) :200-208