Pattern forming dynamical instabilities of Bose-Einstein condensates

被引:168
作者
Kevrekidis, PG [1 ]
Frantzeskakis, DJ
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[2] Univ Athens, Dept Phys, Athens 15784, Greece
来源
MODERN PHYSICS LETTERS B | 2004年 / 18卷 / 5-6期
关键词
Bose-Einstein condensates; modulational instability; snaking instability; solitons; vortices; nonlinear Schrodinger equation; gross-Pitaevskii equations; optical lattice;
D O I
10.1142/S0217984904006809
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this short topical review, we revisit a number of works on the pattern-forming dynamical instabilities of Bose-Einstein condensates in one- and two-dimensional settings. In particular, we illustrate the trapping conditions that allow the reduction of the three-dimensional, mean field description of the condensates (through the Gross-Pitaevskii equation) to such lower dimensional settings, as well as to lattice settings. We then go on to study the modulational instability in one dimension and the snaking/transverse instability in two dimensions as typical examples of long-wavelength perturbations that can destabilize the condensates and lead to the formation of patterns of coherent structures in them. T rains of solitons in one dimension and vortex arrays in two dimensions are prototypical examples of the resulting nonlinear waveforms, upon which we briefly touch at the end of this review.
引用
收藏
页码:173 / 202
页数:30
相关论文
共 136 条
[1]   Array of Bose-Einstein condensates under time-periodic Feshbach-resonance management [J].
Abdullaev, FK ;
Tsoy, EN ;
Malomed, BA ;
Kraenkel, RA .
PHYSICAL REVIEW A, 2003, 68 (05) :8
[2]   Adiabatic dynamics of periodic waves in Bose-Einstein condensates with time dependent atomic scattering length [J].
Abdullaev, FK ;
Kamchatnov, AM ;
Konotop, VV ;
Brazhnyi, VA .
PHYSICAL REVIEW LETTERS, 2003, 90 (23) :4
[3]   Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length [J].
Abdullaev, FK ;
Caputo, JG ;
Kraenkel, RA ;
Malomed, BA .
PHYSICAL REVIEW A, 2003, 67 (01) :10
[4]   Nonlinear excitations in arrays of Bose-Einstein condensates [J].
Abdullaev, FK ;
Baizakov, BB ;
Darmanyan, SA ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW A, 2001, 64 (04) :436061-4360610
[5]   Formation and decay of vortex lattices in Bose-Einstein condensates at finite temperatures [J].
Abo-Shaeer, JR ;
Raman, C ;
Ketterle, W .
PHYSICAL REVIEW LETTERS, 2002, 88 (07) :4
[6]   Observation of vortex lattices in Bose-Einstein condensates [J].
Abo-Shaeer, JR ;
Raman, C ;
Vogels, JM ;
Ketterle, W .
SCIENCE, 2001, 292 (5516) :476-479
[7]   Bright soliton trains of trapped Bose-Einstein condensates [J].
Al Khawaja, U ;
Stoof, HTC ;
Hulet, RG ;
Strecker, KE ;
Partridge, GB .
PHYSICAL REVIEW LETTERS, 2002, 89 (20)
[8]   Wannier functions analysis of the nonlinear Schrodinger equation with a periodic potential [J].
Alfimov, GL ;
Kevrekidis, PG ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW E, 2002, 66 (04) :6
[9]   Matter solitons in Bose-Einstein condensates with optical lattices [J].
Alfimov, GL ;
Konotop, VV ;
Salerno, M .
EUROPHYSICS LETTERS, 2002, 58 (01) :7-13
[10]   Watching dark solitons decay into vortex rings in a Bose-Einstein condensate [J].
Anderson, BP ;
Haljan, PC ;
Regal, CA ;
Feder, DL ;
Collins, LA ;
Clark, CW ;
Cornell, EA .
PHYSICAL REVIEW LETTERS, 2001, 86 (14) :2926-2929