A Complex-based Reconstruction of the Saccharomyces cerevisiae Interactome
被引:69
作者:
Wang, Haidong
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
Wang, Haidong
Kakaradov, Boyko
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
Kakaradov, Boyko
Collins, Sean R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
Calif Inst Quantitat Biomed Res, San Francisco, CA 94158 USA
Howard Hughes Med Inst, San Francisco, CA 94158 USAUniv Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
Collins, Sean R.
[1
,2
,3
]
Karotki, Lena
论文数: 0引用数: 0
h-index: 0
机构:
Max Planck Inst Biochem, D-82152 Martinsried, GermanyUniv Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
Karotki, Lena
[4
]
Fiedler, Dorothea
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
Calif Inst Quantitat Biomed Res, San Francisco, CA 94158 USA
Howard Hughes Med Inst, San Francisco, CA 94158 USAUniv Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
Fiedler, Dorothea
[1
,2
,3
]
Shales, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
Calif Inst Quantitat Biomed Res, San Francisco, CA 94158 USAUniv Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
Shales, Michael
[1
,2
]
Shokat, Kevan M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
Calif Inst Quantitat Biomed Res, San Francisco, CA 94158 USA
Howard Hughes Med Inst, San Francisco, CA 94158 USAUniv Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
Shokat, Kevan M.
[1
,2
,3
]
Walther, Tobias C.
论文数: 0引用数: 0
h-index: 0
机构:
Max Planck Inst Biochem, D-82152 Martinsried, GermanyUniv Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
Walther, Tobias C.
[4
]
Krogan, Nevan J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
Calif Inst Quantitat Biomed Res, San Francisco, CA 94158 USAUniv Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
Krogan, Nevan J.
[1
,2
]
Koller, Daphne
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
Koller, Daphne
机构:
[1] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
[2] Calif Inst Quantitat Biomed Res, San Francisco, CA 94158 USA
[3] Howard Hughes Med Inst, San Francisco, CA 94158 USA
[4] Max Planck Inst Biochem, D-82152 Martinsried, Germany
Most cellular processes are performed by proteomic units that interact with each other. These units are often stoichiometrically stable complexes comprised of several proteins. To obtain a faithful view of the protein interactome we must view it in terms of these basic units (complexes and proteins) and the interactions between them. This study makes two contributions toward this goal. First, it provides a new algorithm for reconstruction of stable complexes from a variety of heterogeneous biological assays; our approach combines state-of-the-art machine learning methods with a novel hierarchical clustering algorithm that allows clusters to overlap. We demonstrate that our approach constructs over 40% more known complexes than other recent methods and that the complexes it produces are more biologically coherent even compared with the reference set. We provide experimental support for some of our novel predictions, identifying both a new complex involved in nutrient starvation and a new component of the eisosome complex. Second, we provide a high accuracy algorithm for the novel problem of predicting transient interactions involving complexes. We show that our complex level network, which we call ComplexNet, provides novel insights regarding the protein-protein interaction network. In particular, we reinterpret the finding that "hubs" in the network are enriched for being essential, showing instead that essential proteins tend to be clustered together in essential complexes and that these essential complexes tend to be large. Molecular & Cellular Proteomics 8: 1361-1381, 2009.