Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles

被引:1186
作者
Kim, Dohyung [1 ]
Resasco, Joaquin [2 ]
Yu, Yi [3 ]
Asiri, Abdullah Mohamed [4 ]
Yang, Peidong [1 ,3 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[4] King Abdulaziz Univ, CEAMR, Jeddah 21589, Saudi Arabia
[5] Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
基金
美国国家科学基金会;
关键词
CO2; REDUCTION; ENERGY; HYDROCARBONS; CHALLENGES; DEPENDENCE; CONVERSION; TRENDS; AUCU;
D O I
10.1038/ncomms5948
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Highly efficient and selective electrochemical reduction of carbon dioxide represents one of the biggest scientific challenges in artificial photosynthesis, where carbon dioxide and water are converted into chemical fuels from solar energy. However, our fundamental understanding of the reaction is still limited and we do not have the capability to design an outstanding catalyst with great activity and selectivity a priori. Here we assemble uniform gold-copper bimetallic nanoparticles with different compositions into ordered monolayers, which serve as a well-defined platform to understand their fundamental catalytic activity in carbon dioxide reduction. We find that two important factors related to intermediate binding, the electronic effect and the geometric effect, dictate the activity of gold-copper bimetallic nanoparticles. These nanoparticle monolayers also show great mass activities, outperforming conventional carbon dioxide reduction catalysts. The insights gained through this study may serve as a foundation for designing better carbon dioxide electrochemical reduction catalysts.
引用
收藏
页数:8
相关论文
共 42 条
[1]   Soft Langmuir-Blodgett Technique for Hard Nanomaterials [J].
Acharya, Somobrata ;
Hill, Jonathan P. ;
Ariga, Katsuhiko .
ADVANCED MATERIALS, 2009, 21 (29) :2959-2981
[2]   Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles [J].
Chen, Yihong ;
Li, Christina W. ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :19969-19972
[3]   Tin Oxide Dependence of the CO2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts [J].
Chen, Yihong ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (04) :1986-1989
[4]   Electroreduction of Carbon Dioxide on Copper-Based Electrodes: Activity of Copper Single Crystals and Copper-Gold Alloys [J].
Christophe, J. ;
Doneux, Th. ;
Buess-Herman, C. .
ELECTROCATALYSIS, 2012, 3 (02) :139-146
[5]   Alternative energy technologies [J].
Dresselhaus, MS ;
Thomas, IL .
NATURE, 2001, 414 (6861) :332-337
[6]   Energy and environment policy case for a global project on artificial photosynthesis [J].
Faunce, Thomas A. ;
Lubitz, Wolfgang ;
Rutherford, A. W. Bill ;
MacFarlane, Douglas R. ;
Moore, Gary F. ;
Yang, Peidong ;
Nocera, Daniel G. ;
Moore, Tom A. ;
Gregory, Duncan H. ;
Fukuzumi, Shunichi ;
Yoon, Kyung Byung ;
Armstrong, Fraser A. ;
Wasielewski, Michael R. ;
Styring, Stenbjorn .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (03) :695-698
[7]   Just a Dream-or Future Reality? [J].
Gasteiger, Hubert A. ;
Markovic, Nenad M. .
SCIENCE, 2009, 324 (5923) :48-49
[8]   A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper [J].
Gattrell, M. ;
Gupta, N. ;
Co, A. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 594 (01) :1-19
[9]   Photoelectrochemical cells [J].
Grätzel, M .
NATURE, 2001, 414 (6861) :338-344
[10]   Understanding Trends in the Electrocatalytic Activity of Metals and Enzymes for CO2 Reduction to CO [J].
Hansen, Heine A. ;
Varley, Joel B. ;
Peterson, Andrew A. ;
Norskov, Jens K. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (03) :388-392