GhDREB1 enhances abiotic stress tolerance, delays GA-mediated development and represses cytokinin signalling in transgenic Arabidopsis

被引:57
作者
Huang, Jin-Guang [1 ]
Yang, Mei [1 ]
Liu, Pei [2 ]
Yang, Guo-Dong [1 ]
Wu, Chang-Ai [1 ]
Zheng, Cheng-Chao [1 ]
机构
[1] Shandong Agr Univ, Coll Life Sci, State Key Lab Crop Biol, Tai An 271018, Shandong, Peoples R China
[2] Zhejiang Univ, Coll Biosyst Engn & Food Sci, Hangzhou 310003, Zhejiang, Peoples R China
关键词
abiotic stress tolerance; cytokinin signalling; dwarfism; GA; GhDREB1; late flowering; PLANT COLD-ACCLIMATION; B RESPONSE REGULATORS; FREEZING TOLERANCE; LOW-TEMPERATURE; GIBBERELLIN METABOLISM; TRANSCRIPTION FACTOR; FUNCTIONAL EXPRESSION; MOLECULAR-CLONING; GENE-EXPRESSION; THALIANA;
D O I
10.1111/j.1365-3040.2009.01995.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plants vary significantly in their ability to tolerate low temperatures. The CBF/DREB1 cold response pathway has been identified in many plant species and plays a pivotal role in low temperature tolerance. Here, we show that GhDREB1 is a functional homologue and elevates the freezing, salt and osmotic stress tolerance of transgenic Arabidopsis. The constitutive expression of GhDREB1 in Arabidopsis caused dwarfism and late flowering phenotypes, which could be rescued by exogenous application of GA(3). Endogenous bioactive GA contents were significantly lower in GhDREB1 overexpressing Arabidopsis than in wild-type plants. RT-PCR analyses revealed that the transcript levels of the GA synthase genes were higher in transgenics than in wild-type plants, whereas the GA deactivating genes were lower. Flowering related genes in different regulatory pathways were also affected by GhDREB1, which may account for the flowering delay phenotype. Moreover, the GhDREB1 overexpressing Arabidopsis exhibited decreased sensitivity to cytokinin (CK) which is associated with repression of expression of type-B and type-A ARRs, two key components in the CK-signalling pathway.
引用
收藏
页码:1132 / 1145
页数:14
相关论文
共 56 条
[1]   Integration of plant responses to environmentally activated phytohormonal signals [J].
Achard, P ;
Cheng, H ;
De Grauwe, L ;
Decat, J ;
Schoutteten, H ;
Moritz, T ;
Van Der Straeten, D ;
Peng, JR ;
Harberd, NP .
SCIENCE, 2006, 311 (5757) :91-94
[2]   The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism [J].
Achard, Patrick ;
Gong, Fan ;
Cheminant, Soizic ;
Alioua, Malek ;
Hedden, Peter ;
Genschik, Pascal .
PLANT CELL, 2008, 20 (08) :2117-2129
[3]   A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance [J].
Agarwal, Manu ;
Hao, Yujin ;
Kapoor, Avnish ;
Dong, Chun-Hai ;
Fujii, Hiroaki ;
Zheng, Xianwu ;
Zhu, Jian-Kang .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (49) :37636-37645
[4]   Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development [J].
Argyros, Rebecca D. ;
Mathews, Dennis E. ;
Chiang, Yi-Hsuan ;
Palmer, Christine M. ;
Thibault, Derek M. ;
Etheridge, Naomi ;
Argyros, D. Aaron ;
Mason, Michael G. ;
Kieber, Joseph J. ;
Schaller, G. Eric .
PLANT CELL, 2008, 20 (08) :2102-2116
[5]   ISOLATION OF THE ARABIDOPSIS GA4 LOCUS [J].
CHIANG, HH ;
HWANG, I ;
GOODMAN, HM .
PLANT CELL, 1995, 7 (02) :195-201
[6]   ICE1:: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis [J].
Chinnusamy, V ;
Ohta, M ;
Kanrar, S ;
Lee, BH ;
Hong, XH ;
Agarwal, M ;
Zhu, JK .
GENES & DEVELOPMENT, 2003, 17 (08) :1043-1054
[7]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[8]   Gibberellin dose-response regulation of GA4 gene transcript levels in Arabidopsis [J].
Cowling, RJ ;
Kamiya, Y ;
Seto, H ;
Harberd, NP .
PLANT PHYSIOLOGY, 1998, 117 (04) :1195-1203
[9]  
Dill A, 2001, GENETICS, V159, P777
[10]   The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1 [J].
Dong, Chun-Hai ;
Agarwal, Manu ;
Zhang, Yiyue ;
Xie, Qi ;
Zhu, Jian-Kang .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (21) :8281-8286