A ribozyme and a catalytic DNA with peroxidase activity: active sites versus cofactor-binding sites

被引:337
作者
Travascio, P
Bennet, AJ
Wang, DY
Sen, D [1 ]
机构
[1] Simon Fraser Univ, Inst Mol Biol & Biochem, Burnaby, BC V5A 1S6, Canada
[2] Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada
来源
CHEMISTRY & BIOLOGY | 1999年 / 6卷 / 11期
基金
加拿大自然科学与工程研究理事会;
关键词
catalytic DNA; enzymology; hemin; peroxidase; ribozyme;
D O I
10.1016/S1074-5521(99)80125-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: An 18-nucleotide DNA oligomer, PS2.M, derived using an in vitro selection method was previously reported to bind hemin (Fe(III)-protoporphyrinIX) with submicromolar affinity. The DNA-hemin complex exhibited DNA-enhanced peroxidative activity. PS2.M is guanine-rich and requires potassium ions to fold to its active conformation, consistent with its forming a guanine-quaduplex. In investigating the specific catalytic features of PS2.M we tested the peroxidative properties of its RNA version (rPS2.M) as well as that of an unrelated DNA guanine-quadruplex, OXY4. Results: The hemin-binding affinity of rPS2.M was found to be 30-fold weaker than that of PS2.M. The UV-visible spectra and kinetics of enzymatic peroxidation of the RNA-hemin complex, however, were nearly identical to those of its DNA counterpart. Both displayed peroxidase activity substantially greater than those of heme proteins such as catalase and Fe(III)-myoglobin. Kinetic analysis suggested that PS2.M and rPS2.M catalyzed the breakdown of the hemin-hydrogen peroxide covalent complex to products. The hemin complex of folded OXY4 (which bound hemin as strongly as did rPS2.M) had a distinct absorption spectrum and only a minor peroxidase activity above the background level. The results indicated that it is possible for RNA and DNA of the same sequence to fold to form comparable cofactor-binding sites, and to show comparable catalytic behavior. The results further suggest that only a subset of cofactor-binding sites formed within folded nucleic acids might be able to function as active sites, by providing the appropriate chemical environments for catalysis.
引用
收藏
页码:779 / 787
页数:9
相关论文
共 54 条
[11]   PEROXIDASE-ACTIVITY OF AN ANTIBODY HEME COMPLEX [J].
COCHRAN, AG ;
SCHULTZ, PG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1990, 112 (25) :9414-9415
[12]   Porphyrin metalation catalyzed by a small RNA molecule [J].
Conn, MM ;
Prudent, JR ;
Schultz, PG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (29) :7012-7013
[13]   FUNCTION AND MECHANISM OF ACTION OF PEROXIDASES [J].
DUNFORD, HB ;
STILLMAN, JS .
COORDINATION CHEMISTRY REVIEWS, 1976, 19 (03) :187-251
[14]   INVITRO SELECTION OF RNA MOLECULES THAT BIND SPECIFIC LIGANDS [J].
ELLINGTON, AD ;
SZOSTAK, JW .
NATURE, 1990, 346 (6287) :818-822
[15]   NMR-based model of a telomerase-inhibiting compound bound to G-quadruplex DNA [J].
Fedoroff, OY ;
Salazar, M ;
Han, HY ;
Chemeris, VV ;
Kerwin, SM ;
Hurley, LH .
BIOCHEMISTRY, 1998, 37 (36) :12367-12374
[16]   THE REACTION BETWEEN METMYOGLOBIN AND HYDROGEN PEROXIDE [J].
GEORGE, P ;
IRVINE, DH .
BIOCHEMICAL JOURNAL, 1952, 52 (04) :511-517
[17]   ORIGIN OF LIFE - THE RNA WORLD [J].
GILBERT, W .
NATURE, 1986, 319 (6055) :618-618
[18]   THE RNA MOIETY OF RIBONUCLEASE-P IS THE CATALYTIC SUBUNIT OF THE ENZYME [J].
GUERRIERTAKADA, C ;
GARDINER, K ;
MARSH, T ;
PACE, N ;
ALTMAN, S .
CELL, 1983, 35 (03) :849-857
[19]   OXIDATION OF DEUTEROFERRIHEME BY HYDROGEN-PEROXIDE [J].
JONES, P ;
PRUDHOE, K ;
ROBSON, T .
BIOCHEMICAL JOURNAL, 1973, 135 (02) :361-365
[20]   RNA EVOLUTION AND THE ORIGINS OF LIFE [J].
JOYCE, GF .
NATURE, 1989, 338 (6212) :217-224