Theoretical framework for the pricing of contingent claims in the presence of model uncertainty

被引:212
作者
Denis, Laurent
Martini, Claude
机构
[1] Univ Evry Val Essone, Dept Math Equipe Anal & Probabil, F-91025 Evry, France
[2] Inst Natl Rech Informat & Automat, F-78153 Le Chesnay, France
[3] Zeliade Syst, F-78153 Le Chesnay, France
关键词
superreplication; capacity; uncertain volatility model; nondominated model; stochastic integral; option pricing;
D O I
10.1214/105051606000000169
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The aim of this work is to evaluate the cheapest superreplication price of a general (possibly path-dependent) European contingent claim in a context where the model is uncertain. This setting is a generalization of the uncertain volatility model (UVM) introduced in by Avellaneda. Levy and Paras. The uncertainty is specified by a family of martingale probability measures which may not be dominated. we obtain a partial characterization result and a full characterization which extends Avellaneda. Levy and Paras results in the UVM case.
引用
收藏
页码:827 / 852
页数:26
相关论文
共 19 条
[11]   GAUSSIAN SOBOLEV SPACES [J].
FEYEL, D ;
DELAPRADELLE, A .
ANNALES DE L INSTITUT FOURIER, 1989, 39 (04) :875-908
[12]   Convex measures of risk and trading constraints [J].
Föllmer, H ;
Schied, A .
FINANCE AND STOCHASTICS, 2002, 6 (04) :429-447
[13]  
Follmer H., 1997, Finance Stoch., V2, P69, DOI [DOI 10.1007/S007800050033, 10.1007/s007800050033]
[14]   REAL VARIABLE LEMMA AND CONTINUITY OF PATHS OF SOME GAUSSIAN PROCESSES [J].
GARSIA, AM ;
RODEMICH, E ;
RUMSEY, H .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1970, 20 (06) :565-&
[15]  
Kramkov DO, 1996, PROBAB THEORY REL, V105, P459
[16]  
Lyons T. J., 1995, Applied Mathematical Finance, V2, P117
[17]  
REVUZ D, 1994, CONTINUOUS MARTINGAL
[18]  
Shiryaev, 2002, LIMIT THEOREM STOCHA
[19]  
[No title captured]