Gaussian approximation of local empirical processes indexed by functions

被引:43
作者
Einmahl, U
Mason, DM
机构
[1] UNIV DELAWARE,DEPT MATH SCI,NEWARK,DE 19716
[2] UNIV BIELEFELD,D-4800 BIELEFELD,GERMANY
[3] UNIV DUSSELDORF,D-4000 DUSSELDORF,GERMANY
[4] UNIV PARIS 06,F-75252 PARIS 05,FRANCE
关键词
D O I
10.1007/s004400050086
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An extended notion of a local empirical process indexed by functions is introduced, which includes kernel density and regression function estimators and the conditional empirical process as special cases. Under suitable regularity conditions a central limit theorem and a strong approximation by a sequence of Gaussian processes are established for such processes. A compact law of the iterated logarithm (LIL) is then inferred from the corresponding LIL for the approximating sequence of Gaussian processes. A number of statistical applications of our results are indicated.
引用
收藏
页码:283 / 311
页数:29
相关论文
共 29 条
[1]   CENTRAL LIMIT-THEOREMS FOR STOCHASTIC-PROCESSES UNDER RANDOM ENTROPY CONDITIONS [J].
ALEXANDER, KS .
PROBABILITY THEORY AND RELATED FIELDS, 1987, 75 (03) :351-378
[2]  
[Anonymous], 1984, LECT NOTES MATH
[3]  
ARCONES MA, 1994, NECESSARY SUFFICIENT
[4]   LAW CONVERGENCE AND ITERATED LOGARITHMIC LAWS FOR GAUSSIAN VECTORS [J].
CARMONA, R ;
KONO, N .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 36 (03) :241-267
[5]   NONSTANDARD FUNCTIONAL LAWS OF THE ITERATED LOGARITHM FOR TAIL EMPIRICAL AND QUANTILE PROCESSES [J].
DEHEUVELS, P ;
MASON, DM .
ANNALS OF PROBABILITY, 1990, 18 (04) :1693-1722
[6]   NONSTANDARD LOCAL EMPIRICAL PROCESSES INDEXED BY SETS [J].
DEHEUVELS, P ;
MASON, DM .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1995, 45 (1-2) :91-112
[7]   FUNCTIONAL LAWS OF THE ITERATED LOGARITHM FOR LOCAL EMPIRICAL PROCESSES INDEXED BY SETS [J].
DEHEUVELS, P ;
MASON, DM .
ANNALS OF PROBABILITY, 1994, 22 (03) :1619-1661
[8]   CENTRAL LIMIT-THEOREMS FOR EMPIRICAL MEASURES [J].
DUDLEY, RM .
ANNALS OF PROBABILITY, 1978, 6 (06) :899-929
[9]   DISTANCES OF PROBABILITY MEASURES AND RANDOM VARIABLES [J].
DUDLEY, RM .
ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (05) :1563-&
[10]   INVARIANCE-PRINCIPLES FOR SUMS OF BANACH-SPACE VALUED RANDOM ELEMENTS AND EMPIRICAL PROCESSES [J].
DUDLEY, RM ;
PHILIPP, W .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 62 (04) :509-552