Mining event-related brain dynamics

被引:1088
作者
Makeig, S [1 ]
Debener, S [1 ]
Onton, J [1 ]
Delorme, A [1 ]
机构
[1] Univ Calif San Diego, Inst Neural Computat, Swartz Ctr Computat Neurosci, La Jolla, CA 92093 USA
关键词
D O I
10.1016/j.tics.2004.03.008
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
This article provides a new, more comprehensive view of event-related brain dynamics founded on an information-based approach to modeling electro-encephalographic (EEG) dynamics. Most EEG research focuses either on peaks 'evoked' in average event-related potentials (ERPs) or on changes 'induced' in the EEG power spectrum by experimental events. Although these measures are nearly complementary, they do not fully model the event-related dynamics in the data, and cannot isolate the signals of the contributing cortical areas. We propose that many ERPs and other EEG features are better viewed as time/frequency perturbations of underlying field potential processes. The new approach combines independent component analysis (ICA), time/frequency analysis, and trial-by-trial visualization that measures EEG source dynamics without requiring an explicit head model.
引用
收藏
页码:204 / 210
页数:7
相关论文
共 49 条
[21]   Independent component analysis:: algorithms and applications [J].
Hyvärinen, A ;
Oja, E .
NEURAL NETWORKS, 2000, 13 (4-5) :411-430
[22]   Alpha-frequency rhythms desynchronize over long cortical distances: A modeling study [J].
Jones, SR ;
Pinto, DJ ;
Kaper, TJ ;
Kopell, N .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2000, 9 (03) :271-291
[23]  
Jung TP, 2000, PSYCHOPHYSIOLOGY, V37, P163, DOI 10.1017/S0048577200980259
[24]   Imaging brain dynamics using independent component analysis [J].
Jung, TP ;
Makeig, S ;
McKeown, MJ ;
Bell, AJ ;
Lee, TW ;
Sejnowski, TJ .
PROCEEDINGS OF THE IEEE, 2001, 89 (07) :1107-1122
[25]   BLIND SEPARATION OF SOURCES .1. AN ADAPTIVE ALGORITHM BASED ON NEUROMIMETIC ARCHITECTURE [J].
JUTTEN, C ;
HERAULT, J .
SIGNAL PROCESSING, 1991, 24 (01) :1-10
[26]   A unifying information-theoretic framework for independent component analysis [J].
Lee, TW ;
Girolami, M ;
Bell, AJ ;
Sejnowski, TJ .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (11) :1-21
[27]   Dynamic brain sources of visual evoked responses [J].
Makeig, S ;
Westerfield, M ;
Jung, TP ;
Enghoff, S ;
Townsend, J ;
Courchesne, E ;
Sejnowski, TJ .
SCIENCE, 2002, 295 (5555) :690-694
[28]  
Makeig S, 1999, J NEUROSCI, V19, P2665
[29]   Blind separation of auditory event-related brain responses into independent components [J].
Makeig, S ;
Jung, TP ;
Bell, AJ ;
Ghahremani, D ;
Sejnowski, TJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (20) :10979-10984
[30]   Response: Event-related brain dynamics - unifying brain electrophysiology [J].
Makeig, S .
TRENDS IN NEUROSCIENCES, 2002, 25 (08) :390-390