Clusters of internally primed transcripts reveal novel long noncoding RNAs

被引:139
作者
Furuno, Masaaki
Pang, Ken C.
Ninomiya, Noriko
Fukuda, Shiro
Frith, Martin C.
Bult, Carol
Kai, Chikatoshi
Kawai, Jun
Carninci, Piero
Hayashizaki, Yoshihide
Mattick, John S.
Suzuki, Harukazu [1 ]
机构
[1] RIKEN, Genome Explorat Res Grp, Genome Network Project Core Grp, Genom Sci Ctr,Yokohama Inst, Yokohama, Kanagawa, Japan
[2] RIKEN, Genome Sci Lab, Discovery Res Inst, Wako Inst, Wako, Saitama, Japan
[3] Jackson Lab, Mouse Genome Informat Consortium, Bar Harbor, ME 04609 USA
[4] Univ Queensland, Australian Res Council Special Res Ctr Funct & Ap, Inst Mol Biosci, Brisbane, Qld, Australia
[5] Ludwig Inst Canc Res, T Cell Lab, Heidelberg, Vic, Australia
来源
PLOS GENETICS | 2006年 / 2卷 / 04期
关键词
D O I
10.1371/journal.pgen.0020037
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Non- protein- coding RNAs ( ncRNAs) are increasingly being recognized as having important regulatory roles. Although much recent attention has focused on tiny 22- to 25- nucleotide microRNAs, several functional ncRNAs are orders of magnitude larger in size. Examples of such macro ncRNAs include Xist and Air, which in mouse are 18 and 108 kilobases ( Kb), respectively. We surveyed the 102,801 FANTOM3 mouse cDNA clones and found that Air and Xist were present not as single, full- length transcripts but as a cluster of multiple, shorter cDNAs, which were unspliced, had little coding potential, and were most likely primed from internal adenine- rich regions within longer parental transcripts. We therefore conducted a genome- wide search for regional clusters of such cDNAs to find novel macro ncRNA candidates. Sixty- six regions were identified, each of which mapped outside known protein- coding loci and which had a mean length of 92 Kb. We detected several known long ncRNAs within these regions, supporting the basic rationale of our approach. In silico analysis showed that many regions had evidence of imprinting and/ or antisense transcription. These regions were significantly associated with microRNAs and transcripts from the central nervous system. We selected eight novel regions for experimental validation by northern blot and RT- PCR and found that the majority represent previously unrecognized noncoding transcripts that are at least 10 Kb in size and predominantly localized in the nucleus. Taken together, the data not only identify multiple new ncRNAs but also suggest the existence of many more macro ncRNAs like Xist and Air.
引用
收藏
页码:537 / 553
页数:17
相关论文
共 58 条
  • [1] MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004)
    Bartel, David P.
    [J]. CELL, 2007, 131 (04) : 11 - 29
  • [2] Identification of hundreds of conserved and nonconserved human microRNAs
    Bentwich, I
    Avniel, A
    Karov, Y
    Aharonov, R
    Gilad, S
    Barad, O
    Barzilai, A
    Einat, P
    Einav, U
    Meiri, E
    Sharon, E
    Spector, Y
    Bentwich, Z
    [J]. NATURE GENETICS, 2005, 37 (07) : 766 - 770
  • [3] Genomic maps and comparative analysis of histone modifications in human and mouse
    Bernstein, BE
    Kamal, M
    Lindblad-Toh, K
    Bekiranov, S
    Bailey, DK
    Huebert, DJ
    McMahon, S
    Karlsson, EK
    Kulbokas, EJ
    Gingeras, TR
    Schreiber, SL
    Lander, ES
    [J]. CELL, 2005, 120 (02) : 169 - 181
  • [4] CHARACTERIZATION OF A MURINE GENE EXPRESSED FROM THE INACTIVE X-CHROMOSOME
    BORSANI, G
    TONLORENZI, R
    SIMMLER, MC
    DANDOLO, L
    ARNAUD, D
    CAPRA, V
    GROMPE, M
    PIZZUTI, A
    MUZNY, D
    LAWRENCE, C
    WILLARD, HF
    AVNER, P
    BALLABIO, A
    [J]. NATURE, 1991, 351 (6324) : 325 - 329
  • [5] THE PRODUCT OF THE MOUSE XIST GENE IS A 15 KB INACTIVE X-SPECIFIC TRANSCRIPT CONTAINING NO CONSERVED ORF AND LOCATED IN THE NUCLEUS
    BROCKDORFF, N
    ASHWORTH, A
    KAY, GF
    MCCABE, VM
    NORRIS, DP
    COOPER, PJ
    SWIFT, S
    RASTAN, S
    [J]. CELL, 1992, 71 (03) : 515 - 526
  • [6] Targeting a complex transcriptome: The construction of the mouse full-length cDNA encyclopedia
    Carninci, P
    Waki, K
    Shiraki, T
    Konno, H
    Shibata, K
    Itoh, M
    Aizawa, K
    Arakawa, T
    Ishii, Y
    Sasaki, D
    Bono, H
    Kondo, S
    Sugahara, Y
    Saito, R
    Osato, N
    Fukuda, S
    Sato, K
    Watahiki, A
    Hirozane-Kishikawa, T
    Nakamura, M
    Shibata, Y
    Yasunishi, A
    Kikuchi, N
    Yoshiki, A
    Kusakabe, M
    Gustincich, S
    Beisel, K
    Pavan, W
    Aidinis, V
    Nakagawara, A
    Held, WA
    Iwata, H
    Kono, T
    Nakauchi, H
    Lyons, P
    Wells, C
    Hume, DA
    Fagiolini, M
    Hensch, TK
    Brinkmeier, M
    Camper, S
    Hirota, J
    Mombaerts, P
    Muramatsu, M
    Okazaki, Y
    Kawai, J
    Hayashizaki, Y
    [J]. GENOME RESEARCH, 2003, 13 (6B) : 1273 - 1289
  • [7] Cytoplasmic RNA extraction from fresh and frozen mammalian tissues
    Carninci, P
    Nakamura, M
    Sato, K
    Hayashizaki, Y
    Brownstein, MJ
    [J]. BIOTECHNIQUES, 2002, 33 (02) : 306 - 309
  • [8] The transcriptional landscape of the mammalian genome
    Carninci, P
    Kasukawa, T
    Katayama, S
    Gough, J
    Frith, MC
    Maeda, N
    Oyama, R
    Ravasi, T
    Lenhard, B
    Wells, C
    Kodzius, R
    Shimokawa, K
    Bajic, VB
    Brenner, SE
    Batalov, S
    Forrest, ARR
    Zavolan, M
    Davis, MJ
    Wilming, LG
    Aidinis, V
    Allen, JE
    Ambesi-Impiombato, X
    Apweiler, R
    Aturaliya, RN
    Bailey, TL
    Bansal, M
    Baxter, L
    Beisel, KW
    Bersano, T
    Bono, H
    Chalk, AM
    Chiu, KP
    Choudhary, V
    Christoffels, A
    Clutterbuck, DR
    Crowe, ML
    Dalla, E
    Dalrymple, BP
    de Bono, B
    Della Gatta, G
    di Bernardo, D
    Down, T
    Engstrom, P
    Fagiolini, M
    Faulkner, G
    Fletcher, CF
    Fukushima, T
    Furuno, M
    Futaki, S
    Gariboldi, M
    [J]. SCIENCE, 2005, 309 (5740) : 1559 - 1563
  • [9] Identification of tandemly-repeated C/D snoRNA genes at the imprinted human 14q32 domain reminiscent of those at the Prader-Willi/Angelman syndrome region
    Cavaillé, J
    Seitz, H
    Paulsen, M
    Ferguson-Smith, AC
    Bachellerie, JP
    [J]. HUMAN MOLECULAR GENETICS, 2002, 11 (13) : 1527 - 1538
  • [10] Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs
    Cawley, S
    Bekiranov, S
    Ng, HH
    Kapranov, P
    Sekinger, EA
    Kampa, D
    Piccolboni, A
    Sementchenko, V
    Cheng, J
    Williams, AJ
    Wheeler, R
    Wong, B
    Drenkow, J
    Yamanaka, M
    Patel, S
    Brubaker, S
    Tammana, H
    Helt, G
    Struhl, K
    Gingeras, TR
    [J]. CELL, 2004, 116 (04) : 499 - 509