New scheme for the running coupling constant in gauge theories using Wilson loops

被引:26
作者
Bilgici, Erek [1 ]
Flachi, Antonino [2 ]
Itou, Etsuko [3 ]
Kurachi, Masafumi [4 ]
Lin, C. -J. David [5 ,6 ]
Matsufuru, Hideo [7 ]
Ohki, Hiroshi [2 ,8 ]
Onogi, Tetsuya [2 ]
Yamazaki, Takeshi [9 ]
机构
[1] Graz Univ, Inst Phys, A-8010 Graz, Austria
[2] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[3] Kogakuin Univ, Acad Support Ctr, Nakanomachi Hachioji 1920015, Japan
[4] Los Alamos Natl Lab, Theoret Div T, Los Alamos, NM 87544 USA
[5] Natl Chiao Tung Univ, Inst Phys, Hsinchu 300, Taiwan
[6] Natl Ctr Theoret Sci, Div Phys, Hsinchu 300, Taiwan
[7] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan
[8] Kyoto Univ, Dept Phys, Kyoto 6068501, Japan
[9] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan
来源
PHYSICAL REVIEW D | 2009年 / 80卷 / 03期
关键词
CHIRAL HIERARCHIES; SYMMETRY-BREAKING; PHASE-TRANSITION; LATTICE; COMPUTATION; DYNAMICS; SCALE; QCD;
D O I
10.1103/PhysRevD.80.034507
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a new renormalization scheme of the running coupling constant in general gauge theories using the Wilson loops. The renormalized coupling constant is obtained from the Creutz ratio in lattice simulations and the corresponding perturbative coefficient at the leading order. The latter can be calculated by adopting the zeta-function resummation techniques. We perform a benchmark test of our scheme in quenched QCD with the plaquette gauge action. The running of the coupling constant is determined by applying the step-scaling procedure. Using several methods to improve the statistical accuracy, we show that the running coupling constant can be determined in a wide range of energy scales with a relatively small number of gauge configurations.
引用
收藏
页数:14
相关论文
共 53 条
[41]   GENERALIZED MULTIDIMENSIONAL EPSTEIN ZETA-FUNCTIONS [J].
KIRSTEN, K .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (01) :459-470
[42]   THE SCHRODINGER FUNCTIONAL - A RENORMALIZABLE PROBE FOR NON-ABELIAN GAUGE-THEORIES [J].
LUSCHER, M ;
NARAYANAN, R ;
WEISZ, P ;
WOLFF, U .
NUCLEAR PHYSICS B, 1992, 384 (1-2) :168-228
[43]   A NUMERICAL-METHOD TO COMPUTE THE RUNNING COUPLING IN ASYMPTOTICALLY FREE THEORIES [J].
LUSCHER, M ;
WEISZ, P ;
WOLFF, U .
NUCLEAR PHYSICS B, 1991, 359 (01) :221-243
[44]  
Mawhinney RD, 2000, NUCL PHYS B-PROC SUP, V83-4, P57, DOI 10.1016/S0920-5632(00)91595-0
[45]  
Miranskii V. A., 1985, Soviet Journal of Particles and Nuclei, V16, P203
[46]   Conformal phase transition in gauge theories [J].
Miransky, VA ;
Yamawaki, K .
PHYSICAL REVIEW D, 1997, 55 (08) :5051-5066
[47]   Conformal phase transition in gauge theories (vol 55, pg 5051, 1997) [J].
Miransky, VA ;
Yamawaki, K .
PHYSICAL REVIEW D, 1997, 56 (06) :3768-3768
[48]   The Nf=0 heavy quark potential from short to intermediate distances [J].
Necco, S ;
Sommer, R .
NUCLEAR PHYSICS B, 2002, 622 (1-2) :328-346
[49]   Zero of the discrete beta function in SU(3) lattice gauge theory with color sextet fermions [J].
Shamir, Yigal ;
Svetitsky, Benjamin .
PHYSICAL REVIEW D, 2008, 78 (03)
[50]   DYNAMICS OF SPONTANEOUS SYMMETRY-BREAKING IN THE WEINBERG-SALAM THEORY [J].
SUSSKIND, L .
PHYSICAL REVIEW D, 1979, 20 (10) :2619-2625