The ARGONAUTE10 gene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 in Arabidopsis

被引:150
作者
Liu, Qili [1 ]
Yao, Xiaozhen [1 ]
Pi, Limin [1 ]
Wang, Hua [1 ]
Cui, Xiaofeng [1 ]
Huang, Hai [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Plant Physiol & Ecol, Shanghai Inst Biol Sci, Natl Lab Plant Mol Genet, Shanghai 200032, Peoples R China
关键词
Arabidopsis; ARGONAUTE10; leaf polarity; miRNA165; 166; shoot apical meristem; tasiR-ARF; TRANS-ACTING SIRNAS; SMALL RNA PATHWAYS; VASCULAR DEVELOPMENT; MEDIATED REPRESSION; DNA METHYLATION; PINHEAD GENE; PLANTS; AGO1; ASYMMETRIC-LEAVES1; ACCUMULATION;
D O I
10.1111/j.1365-313X.2008.03757.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The shoot apical meristem (SAM) of angiosperms comprises a group of undifferentiated cells which divide to maintain the meristem and also give rise to all the above-ground structures of the plant. Previous studies revealed that the Arabidopsis ARGONAUTE10 [AGO10, also called PINHEAD (PNH) or ZWILLE (ZLL)] gene is one of the critical SAM regulators, but the mechanism by which AGO10 modulates the SAM is unknown. In the present study we show that AGO10 genetically represses microRNA165/166 (miR165/166) for SAM maintenance as well as establishment of leaf adaxial-abaxial polarity. Levels of miR165/166 in leaves and embryonic SAMs of pnh/zll/ago10 mutants are abnormally elevated, leading to a reduction in the quantity of homeodomain-leucine zipper (HD-ZIP) III gene transcripts, the targets of miR165/166. This reduction is the primary cause of pnh/zll SAM and leaf defects, because the aberrant pnh/zll phenotypes were partially rescued by either increasing levels of HD-ZIP III transcripts or decreasing levels of miR165/166 in the SAM and leaf. Furthermore, plants with an abnormal apex were more frequent among pnh/zll rdr6 and pnh/zll ago7 double mutants and increased levels of miR165/166 were detected in rdr6 apices. These results indicate that AGO10 and RDR6/AGO7 may act in parallel in modulating accumulation of miR165/166 for normal plant development.
引用
收藏
页码:27 / 40
页数:14
相关论文
共 70 条
[1]   DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7 [J].
Adenot, Xavier ;
Elmayan, Taline ;
Lauressergues, Dominique ;
Boutet, Stéphanie ;
Bouché, Nicolas ;
Gasciolli, Virginie ;
Vaucheret, Hervé .
CURRENT BIOLOGY, 2006, 16 (09) :927-932
[2]  
Allen E, 2005, CELL, V121, P207, DOI 10.1016/j.cell.2005.04.004
[3]   Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species [J].
Alvarez, JP ;
Pekker, I ;
Goldshmidt, A ;
Blum, E ;
Amsellem, Z ;
Eshed, Y .
PLANT CELL, 2006, 18 (05) :1134-1151
[4]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[5]  
BAUMBERGER N, 2005, P NATL ACAD SCI USA, V19, P421
[6]   AGO1 defines a novel locus of Arabidopsis controlling leaf development [J].
Bohmert, K ;
Camus, I ;
Bellini, C ;
Bouchez, D ;
Caboche, M ;
Benning, C .
EMBO JOURNAL, 1998, 17 (01) :170-180
[7]   Specialization and evolution of endogenous small RNA pathways [J].
Chapman, Elisabeth J. ;
Carrington, James C. .
NATURE REVIEWS GENETICS, 2007, 8 (11) :884-896
[8]  
Chen CB, 2000, GENESIS, V26, P42, DOI 10.1002/(SICI)1526-968X(200001)26:1<42::AID-GENE7>3.0.CO
[9]  
2-J
[10]   Radial patterning of Arabidopsis shoots by class IIIHD-ZIP and KANADI genes [J].
Emery, JF ;
Floyd, SK ;
Alvarez, J ;
Eshed, Y ;
Hawker, NP ;
Izhaki, A ;
Baum, SF ;
Bowman, JL .
CURRENT BIOLOGY, 2003, 13 (20) :1768-1774