Geometric Hermite interpolation with maximal order and smoothness

被引:62
作者
Hollig, K
Koch, J
机构
[1] Universität Stuttgart, Mathematisches Institut A, 70511 Stuttgart
关键词
splines; curves; interpolation; geometric smoothness; high accuracy;
D O I
10.1016/0167-8396(96)00004-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We conjecture that, under suitable assumptions, splines of degree less than or equal to n can interpolate points on a smooth curve in R(m) with order of contact k-1=n-1+[(n-1)/(m-1)] at every nth knot. Moreover, this Geometric Hermite Interpolant (GHI) has the optimal approximation order k+1. We give a proof of this conjecture for planar quadratic spline curves and describe a simple construction of curvature continuous quadratic splines from control polygons.
引用
收藏
页码:681 / 695
页数:15
相关论文
共 11 条
  • [1] COMPACTLY SUPPORTED FUNDAMENTAL FUNCTIONS FOR SPLINE INTERPOLATION
    DAHMEN, W
    GOODMAN, TNT
    MICCHELLI, CA
    [J]. NUMERISCHE MATHEMATIK, 1988, 52 (06) : 639 - 664
  • [2] de Boor C., 1987, Computer-Aided Geometric Design, V4, P269, DOI 10.1016/0167-8396(87)90002-1
  • [3] de Boor C., 1978, PRACTICAL GUIDE SPLI, DOI DOI 10.1007/978-1-4612-6333-3
  • [4] Degen W.L.F., 1992, MATH METHODS COMPUTE, VII, P171
  • [5] HIGH ACCURATE RATIONAL APPROXIMATION OF PARAMETRIC CURVES
    DEGEN, WLF
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 1993, 10 (3-4) : 293 - 313
  • [6] HOLLIG K, 1995, IN PRESS COMPUTER AI
  • [7] HOLLIG K, 1988, T 50 ARM C APPL MATH, P287
  • [8] KOCH J, 1995, APPROXIMATION THEORY, V8
  • [9] MORKEN K, 1995, IN PRESS GEN FRAMEWO
  • [10] Schaback R., 1989, Computer-Aided Geometric Design, V6, P219, DOI 10.1016/0167-8396(89)90025-3