Current fluctuations in the one-dimensional symmetric exclusion process with open boundaries

被引:115
作者
Derrida, B
Douçot, B
Roche, PE
机构
[1] Newton Inst, Cambridge CB3 00EH, England
[2] Ecole Normale Super, Phys Stat Lab, F-75231 Paris 05, France
[3] Univ Paris 07, Lab Phys Theor & Hautes Energies, F-75252 Paris 05, France
[4] CNRS, Ctr Rech Tres Basses Temp, F-38042 Grenoble 9, France
[5] Ecole Normale Super, Phys Mat Condensee Lab, F-75231 Paris 05, France
关键词
Large deviations; symmetric simple exclusion process; open system; stationary nonequilibrium state; current fluctuations; ruin problems; diffusive medium; full counting statistics; shot noise;
D O I
10.1023/B:JOSS.0000022379.95508.b2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We calculate the first four cumulants of the integrated current of the one-dimensional symmetric simple exclusion process of N sites with open boundary conditions. For large system size N, the generating function of the integrated current depends on the densities rho(a) and rho(b) of the two reservoirs and on the fugacity z, the parameter conjugated to the integrated current, through a single parameter. Based on our expressions for these first four cumulants, we make a conjecture which leads to a prediction for all the higher cumulants. In the case rho(a)=1 and rho(b)=0, our conjecture gives the same universal distribution as the one obtained by Lee, Levitov, and Yakovets for one-dimensional quantum conductors in the metallic regime.
引用
收藏
页码:717 / 748
页数:32
相关论文
共 40 条
[1]  
[Anonymous], 1968, An introduction to probability theory and its applications
[2]   SUPPRESSION OF SHOT NOISE IN METALLIC DIFFUSIVE CONDUCTORS [J].
BEENAKKER, CWJ ;
BUTTIKER, M .
PHYSICAL REVIEW B, 1992, 46 (03) :1889-1892
[3]   Macroscopic fluctuation theory for stationary non-equilibrium states [J].
Bertini, L ;
De Sole, A ;
Gabrielli, D ;
Jona-Lasinio, G ;
Landim, C .
JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (3-4) :635-675
[4]   Fluctuations in stationary nonequilibrium states of irreversible processes [J].
Bertini, L ;
De Sole, A ;
Gabrielli, D ;
Jona-Lasinio, G ;
Landim, C .
PHYSICAL REVIEW LETTERS, 2001, 87 (04) :40601-1
[5]   Shot noise in mesoscopic conductors [J].
Blanter, YM ;
Büttiker, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 336 (1-2) :1-166
[6]   Exact solution of a partially asymmetric exclusion model using a deformed oscillator algebra [J].
Blythe, RA ;
Evans, MR ;
Colaiori, F ;
Essler, FHL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (12) :2313-2332
[7]  
Bonetto F., 2000, MATH PHYS 2000, P128, DOI [DOI 10.1142/9781848160224_0008, 10.1142/9781848160224_0008.]
[8]   SEMICLASSICAL THEORY OF SHOT-NOISE SUPPRESSION [J].
DEJONG, MJM ;
BEENAKKER, CWJ .
PHYSICAL REVIEW B, 1995, 51 (23) :16867-16870
[9]   Universal large-deviation function of the Kardar-Parisi-Zhang equation in one dimension [J].
Derrida, B ;
Appert, C .
JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (1-2) :1-30
[10]   Exact large deviation function in the asymmetric exclusion process [J].
Derrida, B ;
Lebowitz, JL .
PHYSICAL REVIEW LETTERS, 1998, 80 (02) :209-213