An optimal morphing between polylines

被引:12
作者
Bespamyatnikh, S [1 ]
机构
[1] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
关键词
morphing; polylines; skeleton; shortest path;
D O I
10.1142/S0218195902000839
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We address the problem of continuously transforming or morphing one simple polyline into another so that every point p of the initial polyline moves to a point g of the final polyline using the geodesic shortest path from p to q. We optimize the width of the morphing, that is, the longest path made by a point on the polyline. We present an algorithm for finding the minimum width morphing in O(n(2)) time using O(n) space, where n is the total number of vertices of polylines. This improves the previous algorithm(7) by a factor of log(2) n.
引用
收藏
页码:217 / 228
页数:12
相关论文
共 12 条
[1]   Matching shapes with a reference point [J].
Aichholzer, O ;
Alt, H ;
Rote, G .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1997, 7 (04) :349-363
[2]  
Alt H, 2000, HANDBOOK OF COMPUTATIONAL GEOMETRY, P121, DOI 10.1016/B978-044482537-7/50004-8
[3]   CONGRUENCE, SIMILARITY, AND SYMMETRIES OF GEOMETRIC OBJECTS [J].
ALT, H ;
MEHLHORN, K ;
WAGENER, H ;
WELZL, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (03) :237-256
[4]   COMPUTING THE FRECHET DISTANCE BETWEEN 2 POLYGONAL CURVES [J].
ALT, H ;
GODAU, M .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1995, 5 (1-2) :75-91
[5]  
ALT H, 2001, P 18 INT S THEOR ASP, P63
[6]  
Efrat A, 2001, SIAM PROC S, P680
[7]  
Efrat A, 2000, PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P927
[8]   Morphing simple polygons [J].
Guibas L. ;
Hershberger J. ;
Suri S. .
Discrete & Computational Geometry, 2000, 24 (1) :1-34
[9]   LINEAR-TIME ALGORITHMS FOR VISIBILITY AND SHORTEST-PATH PROBLEMS INSIDE TRIANGULATED SIMPLE POLYGONS [J].
GUIBAS, L ;
HERSHBERGER, J ;
LEVEN, D ;
SHARIR, M ;
TARJAN, RE .
ALGORITHMICA, 1987, 2 (02) :209-233
[10]   COMPUTING MINIMUM LENGTH PATHS OF A GIVEN HOMOTOPY CLASS [J].
HERSHBERGER, J ;
SNOEYINK, J .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1994, 4 (02) :63-97