Pharmacological studies suggest a role for CB1 cannabinoid receptors (CB1R) in regulating neurogenesis in the adult brain. To investigate this possibility, we measured neurogenesis by intraperitoneal injection of bromodeoxyuridine ( BrdU), which labels newborn neurons, in wild-type and CB1R-knockout (CB1R-KO) mice. CB1R-KO mice showed reductions in the number of BrdU-labeled cells to similar to50% of wild-type (WT) levels in dentate gyrus and subventricular zone (SVZ), suggesting that CB1R activation promotes neurogenesis. To test this further, WT mice were given the CB1R antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR141716A) before measuring neurogenesis with BrdU. SR141716A paradoxically increased the number of BrdU-labeled cells by similar to50% in SVZ; another CB1R antagonist, 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide (AM251), had a similar effect. To investigate this discrepancy, SR141716A was given to CB1R-KO mice, in which it still stimulated neurogenesis, indicating involvement of a non-CB1 receptor. Action at one such non-CB1, SR141716A-sensitive site, the VR1 vanilloid receptor, was tested by administering SR141716A to VR1-KO mice, in which the ability of SR141716A to enhance neurogenesis was abolished. Thus, CB1 and VR1 receptors both seem to have roles in regulating adult neurogenesis.