A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases

被引:143
作者
Quezada, Cindy M. [2 ]
Hicks, Stuart W. [1 ]
Galan, Jorge E. [1 ]
Stebbins, C. Erec [2 ]
机构
[1] Yale Univ, Sch Med, Sect Microbial Pathogenesis, Boyer Ctr Mol Med, New Haven, CT 06536 USA
[2] Rockefeller Univ, Lab Struct Microbiol, New York, NY 10065 USA
基金
美国国家卫生研究院;
关键词
microbial pathogenesis; type III secretion; crystallography; SspH2; LEUCINE-RICH REPEAT; SECRETION SYSTEMS; NEDD4; FAMILY; PROTEIN; DEGRADATION; EFFECTORS; ARCHITECTURE; DIVERSITY; PATHWAY; SOPA;
D O I
10.1073/pnas.0811058106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Processes as diverse as receptor binding and signaling, cytoskeletal dynamics, and programmed cell death are manipulated by mimics of host proteins encoded by pathogenic bacteria. We show here that the Salmonella virulence factor SspH2 belongs to a growing class of bacterial effector proteins that harness and subvert the eukaryotic ubiquitination pathway. This virulence protein possesses ubiquitination activity that depends on a conserved cysteine residue. A crystal structure of SspH2 reveals a canonical leucine-rich repeat (LRR) domain that interacts with a unique E3 ligase [which we have termed NEL for Novel E3 Ligase] C-terminal fold unrelated to previously observed HECT or RING-finger E3 ligases. Moreover, the LRR domain sequesters the catalytic cysteine residue contained in the NEL domain, and we suggest a mechanism for activation of the ligase requiring a substantial conformational change to release the catalytic domain for function. We also show that the N-terminal domain targets SspH2 to the apical plasma membrane of polarized epithelial cells and propose a model whereby binding of the LRR to proteins at the target site releases the ligase domain for site-specific function.
引用
收藏
页码:4864 / 4869
页数:6
相关论文
共 36 条
[1]   Exploitation of eukaryotic ubiquitin signaling pathways by effectors translocated by bacterial type III and type IV secretion systems [J].
Angot, Aurelie ;
Vergunst, Annette ;
Genin, Stephane ;
Peeters, Nemo .
PLOS PATHOGENS, 2007, 3 (01) :1-13
[2]   E3 ubiquitin ligases as regulators of membrane protein trafficking and degradation [J].
d'Azzo, A ;
Bongiovanni, A ;
Nastasi, T .
TRAFFIC, 2005, 6 (06) :429-441
[3]   Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase [J].
Diao, Jianbo ;
Zhang, Ying ;
Huibregtse, Jon M. ;
Zhou, Daoguo ;
Chen, Jue .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2008, 15 (01) :65-70
[4]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132
[5]   Unusual molecular architecture of the Yersinia pestis cytotoxin YopM:: A leucine-rich repeat protein with the shortest repeating unit [J].
Evdokimov, AG ;
Anderson, DE ;
Routzahn, KM ;
Waugh, DS .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 312 (04) :807-821
[6]   The HERC proteins: functional and evolutionary insights [J].
Garcia-Gonzalo, FR ;
Rosa, JL .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2005, 62 (16) :1826-1838
[7]   The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction [J].
Glickman, MH ;
Ciechanover, A .
PHYSIOLOGICAL REVIEWS, 2002, 82 (02) :373-428
[8]   EUKARYOTIC PROTEINS EXPRESSED IN ESCHERICHIA-COLI - AN IMPROVED THROMBIN CLEAVAGE AND PURIFICATION PROCEDURE OF FUSION PROTEINS WITH GLUTATHIONE-S-TRANSFERASE [J].
GUAN, KL ;
DIXON, JE .
ANALYTICAL BIOCHEMISTRY, 1991, 192 (02) :262-267
[9]   Ubiquitin and SUMO systems in the regulation of mitotic checkpoints [J].
Gutierrez, Gustavo J. ;
Ronai, Ze'ev .
TRENDS IN BIOCHEMICAL SCIENCES, 2006, 31 (06) :324-332
[10]   A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1 [J].
Haraga, A ;
Miller, SI .
CELLULAR MICROBIOLOGY, 2006, 8 (05) :837-846