Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes

被引:517
作者
Liu, Hao [1 ]
Strobridge, Fiona C. [1 ]
Borkiewicz, Olaf J. [2 ]
Wiaderek, Kamila M. [2 ]
Chapman, Karena W. [2 ]
Chupas, Peter J. [2 ]
Grey, Clare P. [1 ,3 ]
机构
[1] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[2] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA
[3] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
关键词
X-RAY-ABSORPTION; SOLID-SOLUTION; CATHODE MATERIALS; LITHIUM; PHASE; FEPO4; DIFFRACTION; LIXFEPO4; ENERGY; EXPANSION;
D O I
10.1126/science.1252817
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The absence of a phase transformation involving substantial structural rearrangements and large volume changes is generally considered to be a key characteristic underpinning the high-rate capability of any battery electrode material. In apparent contradiction, nanoparticulate LiFePO4, a commercially important cathode material, displays exceptionally high rates, whereas its lithium-composition phase diagram indicates that it should react via a kinetically limited, two-phase nucleation and growth process. Knowledge concerning the equilibrium phases is therefore insufficient, and direct investigation of the dynamic process is required. Using time-resolved in situ x-ray powder diffraction, we reveal the existence of a continuous metastable solid solution phase during rapid lithium extraction and insertion. This nonequilibrium facile phase transformation route provides a mechanism for realizing high-rate capability of electrode materials that operate via two-phase reactions.
引用
收藏
页数:7
相关论文
共 46 条
[1]   Analysis of the FePO4 to LiFePO4 phase transition [J].
Allen, J. L. ;
Jow, T. R. ;
Wolfenstine, J. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2008, 12 (7-8) :1031-1033
[2]  
[Anonymous], 1969, XRAY DIFFRACTION
[3]   Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge [J].
Bai, Peng ;
Cogswell, Daniel A. ;
Bazant, Martin Z. .
NANO LETTERS, 2011, 11 (11) :4890-4896
[4]   TWIN BOUNDARIES IN FERROELASTIC MEDIA WITHOUT INTERFACE DISLOCATIONS [J].
BARSCH, GR ;
KRUMHANSL, JA .
PHYSICAL REVIEW LETTERS, 1984, 53 (11) :1069-1072
[5]   The AMPIX electrochemical cell: a versatile apparatus for in situ X-ray scattering and spectroscopic measurements [J].
Borkiewicz, Olaf J. ;
Shyam, Badri ;
Wiaderek, Kamila M. ;
Kurtz, Charles ;
Chupas, Peter J. ;
Chapman, Karena W. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2012, 45 :1261-1269
[6]   Confirmation of the Domino-Cascade Model by LiFePO4/FePO4 Precession Electron Diffraction [J].
Brunetti, G. ;
Robert, D. ;
Bayle-Guillemaud, P. ;
Rouviere, J. L. ;
Rauch, E. F. ;
Martin, J. F. ;
Colin, J. F. ;
Bertin, F. ;
Cayron, C. .
CHEMISTRY OF MATERIALS, 2011, 23 (20) :4515-4524
[7]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[8]   Electron microscopy study of the LiFePO4 to FePO4 phase transition [J].
Chen, GY ;
Song, XY ;
Richardson, TJ .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (06) :A295-A298
[9]   Intercalation Pathway in Many-Particle LiFePO4 Electrode Revealed by Nanoscale State-of-Charge Mapping [J].
Chueh, William C. ;
El Gabaly, Farid ;
Sugar, Joshua D. ;
Bartelt, Norman C. ;
McDaniel, Anthony H. ;
Fenton, Kyle R. ;
Zavadil, Kevin R. ;
Tyliszczak, Tolek ;
Lai, Wei ;
McCarty, Kevin F. .
NANO LETTERS, 2013, 13 (03) :866-872
[10]  
Coelho A.A., 2007, TOPAS-Academic Version 4.1