Dual recognition of herpes simplex viruses by TLR2 and TLR9 in dendritic cells

被引:217
作者
Sato, Ayuko [1 ]
Linehan, Melissa M. [1 ]
Iwasaki, Akiko [1 ]
机构
[1] Yale Univ, Sch Med, Immunobiol Sect, New Haven, CT 06520 USA
关键词
cytokines; innate immunity; Toll-like receptor; viral infection; plasmacytoid dendritic cell;
D O I
10.1073/pnas.0605102103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dendritic cells (DCs) express multiple Toll-like receptors (TLR) in distinct cellular locations. Herpes simplex viruses (HSV) have been reported to engage both the surface TLR2 and intracellular TLR9 in conventional DCs. However, the contributions of these TLRs in recognition of HSV and the induction of proinflammatory cytokines in DCs remain unclear. Here, we demonstrate that a rare population of HSV, both in laboratory strains and in primary clinical isolates from humans, has the capacity to activate TLR2. This virus population is recognized through both TLR2 and TLR9 for the induction of IL-6 and IL-12 secretion from bone marrow-derived DCs. Further, we describe a previously uncharacterized pathway of viral recognition in which TLR2 and TLR9 are engaged in sequence within the same DC. Live viral infection results in two additional agonists of TLR2 and TLR9. These results indicate, that in cells that express multiple TLRs, pathogens that contain multiple pathogen-associated molecular patterns can be detected in an orchestrate sequence and suggest that the innate immune system in DCs is optimized to linking uptake and degradation of pathogens to microbial recognition.
引用
收藏
页码:17343 / 17348
页数:6
相关论文
共 43 条
[1]   Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function [J].
Adachi, O ;
Kawai, T ;
Takeda, K ;
Matsumoto, M ;
Tsutsui, H ;
Sakagami, M ;
Nakanishi, K ;
Akira, S .
IMMUNITY, 1998, 9 (01) :143-150
[2]   Mammalian Toll-like receptors [J].
Akira, S .
CURRENT OPINION IN IMMUNOLOGY, 2003, 15 (01) :5-11
[3]   Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice [J].
Alexopoulou, L ;
Thomas, V ;
Schnare, M ;
Lobet, Y ;
Anguita, J ;
Schoen, RT ;
Medzhitov, R ;
Fikrig, E ;
Flavell, RA .
NATURE MEDICINE, 2002, 8 (08) :878-884
[4]   Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus [J].
Aravalli, RN ;
Hu, SX ;
Rowen, TN ;
Palmquist, JM ;
Lokensgard, JR .
JOURNAL OF IMMUNOLOGY, 2005, 175 (07) :4189-4193
[5]   TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis [J].
Bafica, A ;
Scanga, CA ;
Feng, CG ;
Leifer, C ;
Cheever, A ;
Sher, A .
JOURNAL OF EXPERIMENTAL MEDICINE, 2005, 202 (12) :1715-1724
[6]   Regulation of phagosome maturation by signals from Toll-like receptors [J].
Blander, JM ;
Medzhitov, R .
SCIENCE, 2004, 304 (5673) :1014-1018
[7]   Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction [J].
Chow, JC ;
Young, DW ;
Golenbock, DT ;
Christ, WJ ;
Gusovsky, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (16) :10689-10692
[8]   Human cytomegalovirus activates inflammatory cytokine responses via CD14 and toll-like receptor 2 [J].
Compton, T ;
Kurt-Jones, EA ;
Boehme, KW ;
Belko, J ;
Latz, E ;
Golenbock, DT ;
Finberg, RW .
JOURNAL OF VIROLOGY, 2003, 77 (08) :4588-4596
[9]   Construction, phenotypic analysis, and immunogenicity of a UL5/UL29 double deletion mutant of herpes simplex virus 2 [J].
Da Costa, X ;
Kramer, MF ;
Zhu, J ;
Brockman, MA ;
Knipe, DM .
JOURNAL OF VIROLOGY, 2000, 74 (17) :7963-7971
[10]  
DACOSTA XJ, 1997, VIROLOGY, V32, P1