Cortactin binding to F-actin revealed by electron microscopy and 3D reconstruction

被引:26
作者
Pant, Kiran
Chereau, David
Hatch, Victoria
Dominguez, Roberto
Lehman, William
机构
[1] Boston Univ, Sch Med, Dept Physiol & Biophys, Boston, MA 02118 USA
[2] Boston Biomed Res Inst, Watertown, MA 02472 USA
关键词
actin; Arp2/3; cortactin; WASP; electron microscopy;
D O I
10.1016/j.jmb.2006.03.065
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cortactin and WASP activate Arp2/3-mediated actin filament nucleation and branching. However, different mechanisms underlie activation by the two proteins, which rely on distinct actin-binding modules and modes of binding to actin filaments. It is generally thought that cortactin binds to "mother" actin filaments, while WASP donates actin monomers to Arp2/3-generated "daughter" filament branches. Interestingly, cortactin also binds WASP in addition to F-actin and the Arp2/3 complex. However, the structural basis for the role of cortactin in filament branching remains unknown, making interpretation difficult. Here, electron microscopy and 3D reconstruction were carried out on F-actin decorated with the actin-binding repeating domain of cortactin, revealing conspicuous density on F-actin attributable to cortactin that is located on a consensus-binding site on subdomain-1 of actin subunits. Strikingly, the binding of cortactin widens the gap between the two long-pitch filament strands. Although other proteins have been found to alter the structure of the filament, the cortactin-induced conformational change appears unique. The results are consistent with a mechanism whereby alterations of the F-actin structure may facilitate recruitment of the Arp2/3 complex to the "mother" filament in the cortex of cells. In addition, cortactin may act as a structural adapter protein, stabilizing nascent filament branches while mediating the simultaneous recruitment of Arp2/3 and WASP. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:840 / 847
页数:8
相关论文
共 33 条
[1]   Regulation of WASP/WAVE proteins: making a long story short [J].
Bompard, G ;
Caron, E .
JOURNAL OF CELL BIOLOGY, 2004, 166 (07) :957-962
[2]   Cortactin signalling and dynamic actin networks [J].
Daly, RJ .
BIOCHEMICAL JOURNAL, 2004, 382 :13-25
[3]   Actin-binding proteins - a unifying hypothesis [J].
Dominguez, R .
TRENDS IN BIOCHEMICAL SCIENCES, 2004, 29 (11) :572-578
[4]   A robust algorithm for the reconstruction of helical filaments using single-particle methods [J].
Egelman, EH .
ULTRAMICROSCOPY, 2000, 85 (04) :225-234
[5]   AN ALGORITHM FOR STRAIGHTENING IMAGES OF CURVED FILAMENTOUS STRUCTURES [J].
EGELMAN, EH .
ULTRAMICROSCOPY, 1986, 19 (04) :367-373
[6]   Mechanism of filament nucleation and branch stability revealed by the structure of the Arp2/3 complex at actin branch junctions [J].
Egile, C ;
Rouiller, I ;
Xu, XP ;
Volkmann, N ;
Li, R ;
Hanein, D .
PLOS BIOLOGY, 2005, 3 (11) :1902-1909
[7]   Three-dimensional image reconstruction of reconstituted smooth muscle thin filaments: Effects of caldesmon [J].
Hodgkinson, JL ;
Marston, SB ;
Craig, R ;
Vibert, P ;
Lehman, W .
BIOPHYSICAL JOURNAL, 1997, 72 (06) :2398-2404
[8]   IMPROVED METHODS FOR BUILDING PROTEIN MODELS IN ELECTRON-DENSITY MAPS AND THE LOCATION OF ERRORS IN THESE MODELS [J].
JONES, TA ;
ZOU, JY ;
COWAN, SW ;
KJELDGAARD, M .
ACTA CRYSTALLOGRAPHICA SECTION A, 1991, 47 :110-119
[9]   REFINEMENT OF THE F-ACTIN MODEL AGAINST X-RAY FIBER DIFFRACTION DATA BY THE USE OF A DIRECTED MUTATION ALGORITHM [J].
LORENZ, M ;
POPP, D ;
HOLMES, KC .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 234 (03) :826-836
[10]   Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex [J].
Machesky, LM ;
Insall, RH .
CURRENT BIOLOGY, 1998, 8 (25) :1347-1356