Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline

被引:354
作者
Lesley, SA
Kuhn, P
Godzik, A
Deacon, AM
Mathews, I
Kreusch, A
Spraggon, G
Klock, HE
McMullan, D
Shin, T
Vincent, J
Robb, A
Brinen, LS
Miller, MD
McPhillips, TM
Miller, MA
Scheibe, D
Canaves, JM
Guda, C
Jaroszewski, L
Selby, TL
Elsliger, MA
Wooley, J
Taylor, SS
Hodgson, KO
Wilson, IA
Schultz, PG
Stevens, RC
机构
[1] Novaratis Res Fdn, Joint Ctr Struct Genomics, Genomics Inst, San Diego, CA 92121 USA
[2] Stanford Univ, Joint Ctr Struct Genomics, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA
[3] Joint Ctr Struct Genomics, La Jolla, CA 92093 USA
[4] San Diego Supercomp Ctr, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, La Jolla, CA 92093 USA
[6] Scripps Res Inst, Joint Ctr Struct Genomics, La Jolla, CA 92037 USA
关键词
D O I
10.1073/pnas.142413399
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Structural genomics is emerging as a principal approach to define protein structure-function relationships. To apply this approach on a genomic scale, novel methods and technologies must be developed to determine large numbers of structures. We describe the design and implementation of a high-throughput structural genomics pipeline and its application to the proteome of the thermophilic bacterium Thermotoga maritima. By using this pipeline, we successfully cloned and attempted expression of 1,376 of the predicted 1,877 genes (73%) and have identified crystallization conditions for 432 proteins, comprising 23% of the T. maritima proteome. Representative structures from TM0423 glycerol dehydrogenase and TM0449 thymidylate synthase-complementing protein are presented as examples of final outputs from the pipeline.
引用
收藏
页码:11664 / 11669
页数:6
相关论文
共 29 条
  • [21] Glycerol dehydrogenase: Structure, specificity, and mechanism of a family III polyol dehydrogenase
    Ruzheinikov, SN
    Burke, J
    Sedelnikova, S
    Baker, PJ
    Taylor, R
    Bullough, PA
    Muir, NM
    Gore, MG
    Rice, DW
    [J]. STRUCTURE, 2001, 9 (09) : 789 - 802
  • [22] Comparison of sequence profiles. Strategies for structural predictions using sequence information
    Rychlewski, L
    Jaroszewski, L
    Li, WZ
    Godzik, A
    [J]. PROTEIN SCIENCE, 2000, 9 (02) : 232 - 241
  • [23] An approach to rapid protein crystallization using nanodroplets
    Santarsiero, BD
    Yegian, DT
    Lee, CC
    Spraggon, G
    Gu, J
    Scheibe, D
    Uber, DC
    Cornell, EW
    Nordmeyer, RA
    Kolbe, WF
    Jin, J
    Jones, AL
    Jaklevic, JM
    Schultz, PG
    Stevens, RC
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2002, 35 : 278 - 281
  • [24] PH HOMEOSTASIS IN ESCHERICHIA-COLI - MEASUREMENT BY P-31 NUCLEAR MAGNETIC-RESONANCE OF METHYLPHOSPHONATE AND PHOSPHATE
    SLONCZEWSKI, JL
    ROSEN, BP
    ALGER, JR
    MACNAB, RM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1981, 78 (10): : 6271 - 6275
  • [25] SPRAGGON G, 2002, IN PRESS ACTA CRYS D
  • [26] High-throughput protein crystallization
    Stevens, RC
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2000, 10 (05) : 558 - 563
  • [27] Automated MAD and MIR structure solution
    Terwilliger, TC
    Berendzen, J
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 1999, 55 : 849 - 861
  • [28] SFCHECK:: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model
    Vaguine, AA
    Richelle, J
    Wodak, SJ
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1999, 55 : 191 - 205
  • [29] Optimizing Shake-and-Bake for proteins
    Weeks, CM
    Miller, R
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 1999, 55 : 492 - 500