Control of internal transport barriers on Alcator C-Mod

被引:18
作者
Fiore, CL
Bonoli, PT
Ernst, DR
Hubbard, AE
Greenwald, MJ
Lynn, A
Marmar, ES
Phillips, P
Redi, MH
Rice, JE
Wolfe, SM
Wukitch, SJ
Zhurovich, K
机构
[1] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[2] Univ Texas, Fus Res Ctr, Austin, TX 78712 USA
[3] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
关键词
D O I
10.1063/1.1652785
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recent studies of internal transport and double transport barrier regimes in the Alcator C-Mod [I. H. Hutchinson , Phys. Plasmas 1, 1511 (1994)] have explored the limits for forming, maintaining, and controlling these plasmas. The C-Mod provides a unique platform for studying such discharges: the ions and electrons are tightly coupled by collisions and the plasma has no internal particle or momentum sources. The double-barrier mode comprised of an edge barrier with an internal transport barrier (ITB) can be induced at will using off-axis ion cyclotron range of frequency (ICRF) injection on either the low or high field side of the plasma with either of the available ICRF frequencies (70 or 80 MHz). When an enhanced D-alpha high confinement mode (EDA H-mode) is accessed in Ohmic plasmas, the double barrier ITB forms spontaneously if the H-mode is sustained for similar to2 energy confinement times. The ITBs formed in both Ohmic and ICRF heated plasmas are quite similar regardless of the trigger method. They are characterized by strong central peaking of the electron density, and a reduction of the core particle and energy transport. The control of impurity influx and heating of the core plasma in the presence of the ITB have been achieved with the addition of central ICRF power in both the Ohmic H-mode and ICRF induced ITBs. The radial location of the particle transport barrier is dependent on the toroidal magnetic field but not on the location of the ICRF resonance. A narrow region of decreased electron thermal transport, as determined by sawtooth heat pulse analysis, is found in these plasmas as well. Transport analysis indicates that a reduction of the particle diffusivity in the barrier region allows the neoclassical pinch to drive the density and impurity accumulation in the plasma center. An examination of the gyrokinetic stability at the trigger time for the ITB suggests that the density and temperature profiles are inherently stable to ion temperature gradient and trapped electron modes in the core inside of the ITB location. (C) 2004 American Institute of Physics.
引用
收藏
页码:2480 / 2487
页数:8
相关论文
共 28 条
[11]   THEORY OF PLASMA TRANSPORT IN TOROIDAL CONFINEMENT SYSTEMS [J].
HINTON, FL ;
HAZELTINE, RD .
REVIEWS OF MODERN PHYSICS, 1976, 48 (02) :239-308
[12]   1ST RESULTS FROM ALCATOR-C-MOD [J].
HUTCHINSON, IH ;
BOIVIN, R ;
BOMBARDA, F ;
BONOLI, P ;
FAIRFAX, S ;
FIORE, C ;
GOETZ, J ;
GOLOVATO, S ;
GRANETZ, R ;
GREENWALD, M ;
HORNE, S ;
HUBBARD, A ;
IRBY, J ;
LABOMBARD, B ;
LIPSCHULTZ, B ;
MARMAR, E ;
MCCRACKEN, G ;
PORKOLAB, M ;
RICE, J ;
SNIPES, J ;
TAKASE, Y ;
TERRY, J ;
WOLFE, S ;
CHRISTENSEN, C ;
GARNIER, D ;
GRAF, M ;
HSU, T ;
LUKE, T ;
MAY, M ;
NIEMCZEWSKI, A ;
TINIOS, G ;
SCHACHTER, J ;
URBAHN, J .
PHYSICS OF PLASMAS, 1994, 1 (05) :1511-1518
[13]   Internal transport barrier triggering by rational magnetic flux surfaces in tokamaks [J].
Joffrin, E ;
Challis, CD ;
Conway, GD ;
Garbet, X ;
Gude, A ;
Günter, S ;
Hawkes, NC ;
Hender, TC ;
Howell, DF ;
Huysmans, GTA ;
Lazzaro, E ;
Maget, P ;
Marachek, M ;
Peeters, AG ;
Pinches, SD ;
Sharapov, SE .
NUCLEAR FUSION, 2003, 43 (10) :1167-1174
[14]   INTERNAL TRANSPORT BARRIER ON Q=3 SURFACE AND POLOIDAL PLASMA SPIN-UP IN JT-60U HIGH-BETA(P) DISCHARGES [J].
KOIDE, Y ;
KIKUCHI, M ;
MORI, M ;
TSUJI, S ;
ISHIDA, S ;
ASAKURA, N ;
KAMADA, Y ;
NISHITANI, T ;
KAWANO, Y ;
HATAE, T ;
FUJITA, T ;
FUKUDA, T ;
SAKASAI, A ;
KONDOH, T ;
YOSHINO, R ;
NEYATANI, Y .
PHYSICAL REVIEW LETTERS, 1994, 72 (23) :3662-3665
[15]   COMPARISON OF INITIAL-VALUE AND EIGENVALUE CODES FOR KINETIC TOROIDAL PLASMA INSTABILITIES [J].
KOTSCHENREUTHER, M ;
REWOLDT, G ;
TANG, WM .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 88 (2-3) :128-140
[16]   Mechanism of the transport barriers formation at lower hybrid heating in the FT-2 tokamak experiments [J].
Lashkul, SI ;
Budnikov, VN ;
Borevich, AA ;
Chechik, EO ;
Dyachenko, VV ;
Goncharov, PR ;
Esipov, LA ;
Its, ER ;
Kantor, MY ;
Kouprienko, DV ;
Popov, AY ;
Podushnikova, KA ;
Sackharov, IE ;
Shatalin, SV ;
Yermolaev, VB .
PLASMA PHYSICS AND CONTROLLED FUSION, 2000, 42 :A169-A174
[17]   IMPROVED CONFINEMENT WITH REVERSED MAGNETIC SHEAR IN TFTR [J].
LEVINTON, FM ;
ZARNSTORFF, MC ;
BATHA, SH ;
BELL, M ;
BELL, RE ;
BUDNY, RV ;
BUSH, C ;
CHANG, Z ;
FREDRICKSON, E ;
JANOS, A ;
MANICKAM, J ;
RAMSEY, A ;
SABBAGH, SA ;
SCHMIDT, GL ;
SYNAKOWSKI, EJ ;
TAYLOR, G .
PHYSICAL REVIEW LETTERS, 1995, 75 (24) :4417-4420
[18]  
REDI MH, 2002, UNPUB PHYS PLASMAS
[19]  
REDI MH, 2002, P EPS 2002 MONTR SWI
[20]   Pressure profile modification of internal transport barrier plasmas in Alcator C-Mod [J].
Rice, JE ;
Bonoli, PT ;
Fiore, CL ;
Lee, WD ;
Marmar, ES ;
Wukitch, SJ ;
Granetz, RS ;
Hubbard, AE ;
Hughes, JW ;
Irby, JH ;
Lin, Y ;
Mossessian, D ;
Wolfe, SM ;
Zhurovich, K ;
Greenwald, MJ ;
Hutchinson, IH ;
Porkolab, M ;
Snipes, JA .
NUCLEAR FUSION, 2003, 43 (08) :781-788