Control Law Proposition for the Stabilization of Discrete Takagi-Sugeno Models

被引:98
作者
Guerra, Thierry Marie [1 ]
Kruszewski, Alexandre [2 ]
Bernal, Miguel [3 ]
机构
[1] Univ Valenciennes Hainaut Cambresis, CNRS, UMR 8530, Lab Automat & Mecan Ind & Humaines, F-59313 Valenciennes, France
[2] Ecole Cent Lille, CNRS, UMR 8146, LAGIS, F-59651 Villeneuve Dascq, France
[3] Natl Res Syst, Mexico City 03940, DF, Mexico
关键词
Linear matrix inequalities (LMI); Lyanupov functional; stabilization; Takagi-Sugeno discrete models; PIECEWISE LYAPUNOV FUNCTIONS; CONTROL-SYSTEM DESIGN; FUZZY-SYSTEMS; NONLINEAR-SYSTEMS; LMI; STABILITY; FORM; REDUCTION;
D O I
10.1109/TFUZZ.2008.928602
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper deals with the stabilization of a class of discrete nonlinear models, namely those in the Takagi-Sugeno form; its main goal is to reduce conservatism of existing stabilization conditions using a special class of candidate Lyapunov functions and an enhanced control law. It is shown that the use of the aforementioned Lyapunov function leads to less-pessimistic solutions. The usefulness of the new control law is shown through several examples.
引用
收藏
页码:724 / 731
页数:8
相关论文
共 20 条
[11]   New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI [J].
Liu, XD ;
Zhang, QL .
AUTOMATICA, 2003, 39 (09) :1571-1582
[12]  
Megretski A, 1996, IEEE DECIS CONTR P, P2389, DOI 10.1109/CDC.1996.573446
[13]   A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design [J].
Rhee, BJ ;
Won, S .
FUZZY SETS AND SYSTEMS, 2006, 157 (09) :1211-1228
[14]   Perspectives of fuzzy systems and control [J].
Sala, A ;
Guerra, TM ;
Babuska, R .
FUZZY SETS AND SYSTEMS, 2005, 156 (03) :432-444
[15]  
Skelton R. E., UNIFIED ALGEBRAIC AP
[16]  
Tanaka K., 2001, FUZZY CONTROL SYSTEM, DOI [10.1002/0471224596, DOI 10.1002/0471224596]
[17]   Model construction, rule reduction, and robust compensation for generalized form of Takagi-Sugeno fuzzy systems [J].
Taniguchi, T ;
Tanaka, K ;
Ohtake, H ;
Wang, HO .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2001, 9 (04) :525-538
[18]   Parameterized linear matrix inequality techniques in fuzzy control system design [J].
Tuan, HD ;
Apkarian, P ;
Narikiyo, T ;
Yamamoto, Y .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2001, 9 (02) :324-332
[19]   An approach to fuzzy control of nonlinear systems: Stability and design issues [J].
Wang, HO ;
Tanaka, K ;
Griffin, MF .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1996, 4 (01) :14-23
[20]   Stability analysis and H∞ controller design of fuzzy large-scale systems based on piecewise Lyapunov functions [J].
Zhang, Hongbin ;
Li, Chunguang ;
Liao, Xiaofeng .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2006, 36 (03) :685-698