Efficient determination of multiple regularization parameters in a generalized L-curve framework

被引:187
作者
Belge, M
Kilmer, ME
Miller, EL
机构
[1] Tufts Univ, Dept Math, Medford, MA 02155 USA
[2] Aware Inc, Bedford, MA 01730 USA
[3] Northeastern Univ, Boston, MA 02115 USA
关键词
D O I
10.1088/0266-5611/18/4/314
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The selection of multiple regularization parameters is considered in a generalized L-curve framework. Multiple-dimensional extensions of the L-curve for selecting multiple regularization parameters are introduced, and a minimum distance function (MDF) is developed for approximating the regularization parameters corresponding to the generalized corner of the L-hypersurface. For the single-parameter (i.e. L-curve) case, it is shown through a model that the regularization parameters minimizing the MDF essentially maximize the curvature of the L-curve. Furthermore, for both the single- and multiple-parameter cases the MDF approach leads to a simple fixed-point iterative algorithm for computing regularization parameters. Examples indicate that the algorithm converges rapidly thereby making the problem of computing parameters according to the generalized corner of the L-hypersurface computationally tractable.
引用
收藏
页码:1161 / 1183
页数:23
相关论文
共 24 条
  • [1] Spatially adaptive wavelet-based multiscale image restoration
    Banham, MR
    Katsaggelos, AK
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1996, 5 (04) : 619 - 634
  • [2] BELGE M, 1998, P SPIE 98 BAY INF IN, V3459
  • [3] BELGE M, 1998, P ICIP 98 CHIC IL OC
  • [4] BROOKS DH, 1998, IEEE T BIOMED ENG
  • [5] Deterministic edge-preserving regularization in computed imaging
    Charbonnier, P
    BlancFeraud, L
    Aubert, G
    Barlaud, M
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (02) : 298 - 311
  • [6] Do Carmo Manfredo P, 2016, Differential geometry of curves & surfaces, Vsecond
  • [7] FLANDERS H, 1989, DIFFERENTIAL FORMS A
  • [8] Groetsch C. W., 1984, THEORY TIKHONOV REGU
  • [9] Limitations of the L-curve method in ill-posed problems
    Hanke, M
    [J]. BIT NUMERICAL MATHEMATICS, 1996, 36 (02) : 287 - 301
  • [10] A general heuristic for choosing the regularization parameter in ill-posed problems
    Hanke, M
    Raus, T
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (04) : 956 - 972