MRI detection of single particles for cellular imaging

被引:387
作者
Shapiro, EM
Skrtic, S
Sharer, K
Hill, JM
Dunbar, CE
Koretsky, AP
机构
[1] NINDS, Lab Funct & Mol Imaging, NIH, Bethesda, MD 20892 USA
[2] NHLBI, Hematol Branch, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1073/pnas.0403918101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
There is rapid growth in the use of MRI for molecular and cellular imaging. Much of this work relies on the high relaxivity of nanometer-sized, ultrasmall dextran-coated iron oxide particles. Typically, millions of dextran-coated ultrasmall iron oxide particles must be loaded into cells for efficient detection. Here we show that single, micrometer-sized iron oxide particles (MPIOs) can be detected by MRI in vitro in agarose samples, in cultured cells, and in mouse embryos. Experiments studying effects of MRI resolution and particle size from 0.76 to 1.63 mum indicated that T-2(*) effects can be readily detected from single MPIOs at 50-mum resolution and significant signal effects could be detected at resolutions as low as 200 mum. Cultured cells were labeled with fluorescent MPIOs such that single particles were present in individual cells. These single particles in single cells could be detected both by MRI and fluorescence microscopy. Finally, single particles injected into single-cell-stage mouse embryos could be detected at embryonic day 11.5, demonstrating that even after many cell divisions, daughter cells still carry individual particles. These results demonstrate that MRI can detect single particles and indicate that single-particle detection will be useful for cellular imaging.
引用
收藏
页码:10901 / 10906
页数:6
相关论文
共 36 条
[1]  
Anderson SA, 2000, MAGNET RESON MED, V44, P433, DOI 10.1002/1522-2594(200009)44:3<433::AID-MRM14>3.0.CO
[2]  
2-9
[3]   Imaging cortical anatomy by high-resolution MR at 3.0T: Detection of the stripe of Gennari in visual area 17 [J].
Barbier, EL ;
Marrett, S ;
Danek, A ;
Vortmeyer, A ;
van Gelderen, P ;
Duyn, J ;
Bandettini, P ;
Grafman, J ;
Koretskyk, AP .
MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (04) :735-738
[4]  
Beckmann N, 2003, MAGNET RESON MED, V49, P1047, DOI [10.1002/mrm.10480, 10.1002/mrm10480]
[5]   Imaging transgenic animals [J].
Budinger, TF ;
Benaron, DA ;
Koretsky, AP .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 1999, 1 :611-648
[6]  
Bulte JWM, 2000, AM J NEURORADIOL, V21, P1767
[7]   Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells [J].
Bulte, JWM ;
Douglas, T ;
Witwer, B ;
Zhang, SC ;
Strable, E ;
Lewis, BK ;
Zywicke, H ;
Miller, B ;
van Gelderen, P ;
Moskowitz, BM ;
Duncan, ID ;
Frank, JA .
NATURE BIOTECHNOLOGY, 2001, 19 (12) :1141-1147
[8]   In vivo magnetic resonance tracking of magnetically labeled cells after transplantation [J].
Bulte, JWM ;
Duncan, ID ;
Frank, JA .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2002, 22 (08) :899-907
[9]   MR imaging of murine arthritis using ultrasmall superparamagnetic iron oxide particles [J].
Dardzinski, BJ ;
Schmithorst, VJ ;
Holland, SK ;
Boivin, GP ;
Imagawa, T ;
Watanabe, S ;
Lewis, JM ;
Hirsch, R .
MAGNETIC RESONANCE IMAGING, 2001, 19 (09) :1209-1216
[10]   Detection of single mammalian cells by high-resolution magnetic resonance imaging [J].
Dodd, SJ ;
Williams, M ;
Suhan, JP ;
Williams, DS ;
Koretsky, AP ;
Ho, C .
BIOPHYSICAL JOURNAL, 1999, 76 (01) :103-109