Displacement of histones at promoters of Saccharomyces cerevisiae heat shock genes is differentially associated with histone H3 acetylation

被引:41
作者
Erkina, T. Y. [1 ]
Erkine, A. M. [1 ]
机构
[1] Univ S Dakota, Sanford Sch Med, Div Basic Biomed Sci, Vermillion, SD 57069 USA
关键词
D O I
10.1128/MCB.00666-06
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chromatin remodeling at promoters of activated genes spans from mild histone modifications to outright displacement of nucleosomes in trans. Factors affecting these events are not always clear. Our results indicate that histone H3 acetylation associated with histone displacement differs drastically even between promoters of such closely related heat shock genes as HSP12, SSA4, and HSP82. The HSP12 promoter, with the highest level of histone displacement, showed the highest level of H3 acetylation, while the SSA4 promoter, with a lower histone displacement, showed only modest H3 acetylation. Moreover, for the HSP12 promoter, the level of acetylated H3 is temporarily increased prior to nucleosome departure. Individual promoters in strains expressing truncated versions of heat shock factor (HSF) showed that deletion of either one of two activating regions in HSF led to the diminished histone displacement and correspondingly lower 113 acetylation. The deletion of both regions simultaneously severely decreased histone displacement for all promoters tested, showing the dependence of these processes on HSF. The level of histone H3 acetylation at individual promoters in strains expressing truncated HSF also correlated with the extent of histone displacement. The beginning of chromatin remodeling coincides with the polymerase II loading on heat shock gene promoters and is regulated either by HSF binding or activation of preloaded HSF.
引用
收藏
页码:7587 / 7600
页数:14
相关论文
共 52 条
[1]   Ordered recruitment of chromatin modifying and general transcription factors to the IFN-β promoter [J].
Agalioti, T ;
Lomvardas, S ;
Parekh, B ;
Yie, JM ;
Maniatis, T ;
Thanos, D .
CELL, 2000, 103 (04) :667-678
[2]   KEY FEATURES OF HEAT-SHOCK REGULATORY ELEMENTS [J].
AMIN, J ;
ANANTHAN, J ;
VOELLMY, R .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (09) :3761-3769
[3]   Broad, but not universal, transcriptional requirement for yTAFII17, a histone H3-like TAFII present in TFIID and SAGA [J].
Apone, LM ;
Virbasius, CA ;
Holstege, FCP ;
Wang, J ;
Young, RA ;
Green, MR .
MOLECULAR CELL, 1998, 2 (05) :653-661
[4]   Suppression of an Hsp70 mutant phenotype in Saccharomyces cerevisiae through loss of function of the chromatin component Sin1p/Spt2p [J].
Baxter, BK ;
Craig, EA .
JOURNAL OF BACTERIOLOGY, 1998, 180 (24) :6484-6492
[5]   Removal of promoter nucleosomes by disassembly rather than sliding in vivo [J].
Boeger, H ;
Griesenbeck, J ;
Strattan, JS ;
Kornberg, RD .
MOLECULAR CELL, 2004, 14 (05) :667-673
[6]   The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons [J].
Boy-Marcotte, E ;
Lagniel, G ;
Perrot, M ;
Bussereau, F ;
Boudsocq, A ;
Jacquet, M ;
Labarre, J .
MOLECULAR MICROBIOLOGY, 1999, 33 (02) :274-283
[7]  
Chou S, 1999, GENETICS, V153, P1573
[8]   Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter (Publication with Expression of Concern) [J].
Cosma, MP ;
Tanaka, TU ;
Nasmyth, K .
CELL, 1999, 97 (03) :299-311
[9]   Histone acetylation at promoters is differentially affected by specific activators and repressors [J].
Deckert, J ;
Struhl, K .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (08) :2726-2735
[10]   Structure and ligand of a histone acetyltransferase bromodomain [J].
Dhalluin, C ;
Carlson, JE ;
Zeng, L ;
He, C ;
Aggarwal, AK ;
Zhou, MM .
NATURE, 1999, 399 (6735) :491-496