Bayesian decomposition - Analyzing microarray data within a biological context

被引:8
作者
Ochs, MF [1 ]
Moloshok, TD [1 ]
Bidaut, G [1 ]
Toby, G [1 ]
机构
[1] Fox Chase Canc Ctr, Div Populat Sci, Philadelphia, PA 19111 USA
来源
APPLICATIONS OF BIOINFORMATICS IN CANCER DETECTION | 2004年 / 1020卷
关键词
bayesian methods; gene expression; microarray; signaling pathways;
D O I
10.1196/annals.1310.018
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The detection and correct identification of cancer, especially at an early stage, are vitally important for patient survival and quality of life. Since signaling pathways play critical roles in cancer development and metastasis, methods that reliably assess the activity of these pathways are critical to understand cancer and the response to therapy. Bayesian Decomposition (BD) identifies signatures of expression that can be linked directly to signaling pathway activity, allowing the changes in mRNA levels to be used as downstream indicators of pathway activity. Here, we demonstrate this ability by identifying the downstream expression signal associated with the mating response in Saccharomyces cerevisiae and showing that this signal disappears in deletion mutants of genes critical to the MAPK signaling cascade used to trigger the response. We also show the use of BD in the context of supervised learning, by analyzing the Mus musculus tissue-specific data set provided by Project Normal. The algorithm correctly removes routine metabolic processes, allowing tissue-specific signatures of expression to be identified. Gene ontology is used to interpret these signatures. Since a number of modern therapeutics specifically target signaling proteins, it is important to be able to identify changes in signaling pathways in order to use microarray data to interpret cancer response. By removing routine metabolic signatures and linking specific signatures to signaling pathway activity, BD makes it possible to link changes in microarray results to signaling pathways.
引用
收藏
页码:212 / 226
页数:15
相关论文
共 37 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]   BAYESIAN COMPUTATION AND STOCHASTIC-SYSTEMS [J].
BESAG, J ;
GREEN, P ;
HIGDON, D ;
MENGERSEN, K .
STATISTICAL SCIENCE, 1995, 10 (01) :3-41
[4]  
BESAG J, 1986, J R STAT SOC B, V48, P259
[5]   Bayesian decomposition analysis of gene expression in yeast deletion mutants [J].
Bidaut, G ;
Moloshok, TD ;
Grant, JD ;
Manion, FJ ;
Ochs, MF .
METHODS OF MICROARRAY DATA ANALYSIS II, 2002, :105-122
[6]   Gene-expression profiling in human cutaneous melanoma [J].
Carr, KM ;
Bittner, M ;
Trent, JM .
ONCOGENE, 2003, 22 (20) :3076-3080
[7]   Discordant protein and mRNA expression in lung adenocarcinomas [J].
Chen, GA ;
Gharib, TG ;
Huang, CC ;
Taylor, JMG ;
Misek, DE ;
Kardia, SLR ;
Giordano, TJ ;
Iannettoni, MD ;
Orringer, MB ;
Hanash, SM ;
Beer, DG .
MOLECULAR & CELLULAR PROTEOMICS, 2002, 1 (04) :304-313
[8]  
Cooper G.M., 1992, ELEMENTS HUMAN CANC
[9]   YPD™, PombePD™ and WormPD™:: model organism volumes of the BioKnowledge™ Library, an integrated resource for protein information [J].
Costanzo, MC ;
Crawford, ME ;
Hirschman, JE ;
Kranz, JE ;
Olsen, P ;
Robertson, LS ;
Skrzypek, MS ;
Braun, BR ;
Hopkins, KL ;
Kondu, P ;
Lengieza, C ;
Lew-Smith, JE ;
Tillberg, M ;
Garrels, JI .
NUCLEIC ACIDS RESEARCH, 2001, 29 (01) :75-79
[10]   The Yeast Proteome Database (YPD) and Caenorhabditis elegans Proteome Database (WormPD):: comprehensive resources for the organization and comparison of model organism protein information [J].
Costanzo, MC ;
Hogan, JD ;
Cusick, ME ;
Davis, BP ;
Fancher, AM ;
Hodges, PE ;
Kondu, P ;
Lengieza, C ;
Lew-Smith, JE ;
Lingner, C ;
Roberg-Perez, KJ ;
Tillberg, M ;
Brooks, JE ;
Garrels, JI .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :73-76