Semiclassical field theory approach to quantum chaos

被引:64
作者
Andreev, AV
Simons, BD
Agam, O
Altshuler, BL
机构
[1] NEC RES INST,PRINCETON,NJ 08540
[2] UNIV CAMBRIDGE,CAVENDISH LAB,CAMBRIDGE CB3 0HE,ENGLAND
基金
美国国家科学基金会;
关键词
quantum chaos; random matrix theory;
D O I
10.1016/S0550-3213(96)00473-7
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct a field theory to describe energy averaged quantum statistical properties of systems which are chaotic in their classical limit. An expression for the generating function of general statistical correlators is presented in the form of a functional supermatrix non-linear sigma-model where the effective action involves the evolution operator of the classical dynamics. Low-lying degrees of freedom of the field theory are shown to reflect the irreversible classical dynamics describing relaxation of phase space distributions, The validity of this approach is investigated over a wide range of energy scales. As well as recovering the universal long-time behavior characteristic of random matrix ensembles, this approach accounts correctly for the short-time limit yielding results which agree with the diagonal approximation of periodic orbit theory.
引用
收藏
页码:536 / 566
页数:31
相关论文
共 55 条
  • [31] GORKOV LP, 1965, ZH EKSP TEOR FIZ, V21, P940
  • [32] Gutzwiller MC, 1990, CHAOS CLASSICAL QUAN
  • [33] Haake F., 1991, QUANTUM SIGNATURES C
  • [34] INTRINSIC IRREVERSIBILITY AND THE VALIDITY OF THE KINETIC DESCRIPTION OF CHAOTIC SYSTEMS
    HASEGAWA, HH
    DRIEBE, DJ
    [J]. PHYSICAL REVIEW E, 1994, 50 (03) : 1781 - 1809
  • [35] JIANONNI MJ, 1991, CHAOS QUANTUM PHYSIC
  • [36] KRAVTSOV VE, 1994, JETP LETT+, V60, P656
  • [37] Mehta M. L., 1991, Random Matrices
  • [38] QUANTUM MECHANICS AS A STATISTICAL THEORY
    MOYAL, JE
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1949, 45 (01): : 99 - 124
  • [39] MUZYKANTSKII BA, 1995, JETP LETT+, V62, P76
  • [40] MUZYKANTSKII BA, CONDMAT9601045