TIGER: A data analysis pipeline for testing the strong-field dynamics of general relativity with gravitational wave signals from coalescing compact binaries

被引:132
作者
Agathos, M. [1 ]
Del Pozzo, W. [1 ,2 ]
Li, T. G. F. [1 ,3 ]
Van Den Broeck, C. [1 ]
Veitch, J. [1 ]
Vitale, S. [4 ]
机构
[1] Nikhef Natl Inst Subat Phys, NL-1098 XG Amsterdam, Netherlands
[2] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England
[3] CALTECH, LIGO Lab, Pasadena, CA 91125 USA
[4] MIT, LIGO Lab, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW D | 2014年 / 89卷 / 08期
基金
美国国家科学基金会;
关键词
TEMPLATE BANK; SEARCH; PULSAR; SPACE;
D O I
10.1103/PhysRevD.89.082001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The direct detection of gravitational waves with upcoming second-generation gravitational wave observatories such as Advanced LIGO and Advanced Virgo will allow us to probe the genuinely strong-field dynamics of general relativity (GR) for the first time. We have developed a data analysis pipeline called TIGER (test infrastructure for general relativity), which uses signals from compact binary coalescences to perform a model-independent test of GR. In this paper we focus on signals from coalescing binary neutron stars, for which sufficiently accurate waveform models are already available which can be generated fast enough on a computer that they can be used in Bayesian inference. By performing numerical experiments in stationary, Gaussian noise, we show that for such systems, TIGER is robust against a number of unmodeled fundamental, astrophysical, and instrumental effects, such as differences between waveform approximants, a limited number of post-Newtonian phase contributions being known, the effects of neutron star tidal deformability on the orbital motion, neutron star spins, and instrumental calibration errors.
引用
收藏
页数:12
相关论文
共 76 条
[51]   Parametrized tests of post-Newtonian theory using Advanced LIGO and Einstein Telescope [J].
Mishra, Chandra Kant ;
Arun, K. G. ;
Iyer, Bala R. ;
Sathyaprakash, B. S. .
PHYSICAL REVIEW D, 2010, 82 (06)
[52]  
O'Shaughnessy R., ARXIV13084704
[53]  
Pan Y., ARXIV13076232
[54]   Matter effects on binary neutron star waveforms [J].
Read, Jocelyn S. ;
Baiotti, Luca ;
Creighton, Jolien D. E. ;
Friedman, John L. ;
Giacomazzo, Bruno ;
Kyutoku, Koutarou ;
Markakis, Charalampos ;
Rezzolla, Luciano ;
Shibata, Masaru ;
Taniguchi, Keisuke .
PHYSICAL REVIEW D, 2013, 88 (04)
[55]   Rosetta stone for parametrized tests of gravity [J].
Sampson, Laura ;
Yunes, Nicolas ;
Cornish, Neil .
PHYSICAL REVIEW D, 2013, 88 (06)
[56]   Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries [J].
Santamaria, L. ;
Ohme, F. ;
Ajith, P. ;
Bruegmann, B. ;
Dorband, N. ;
Hannam, M. ;
Husa, S. ;
Moesta, P. ;
Pollney, D. ;
Reisswig, C. ;
Robinson, E. L. ;
Seiler, J. ;
Krishnan, B. .
PHYSICAL REVIEW D, 2010, 82 (06)
[57]   CHOICE OF FILTERS FOR THE DETECTION OF GRAVITATIONAL-WAVES FROM COALESCING BINARIES [J].
SATHYAPRAKASH, BS ;
DHURANDHAR, SV .
PHYSICAL REVIEW D, 1991, 44 (12) :3819-3834
[58]   Gravitational waves from binary systems in circular orbits: Does the post-Newtonian expansion converge? [J].
Simone, LE ;
Leonard, SW ;
Poisson, E ;
Will, CM .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (01) :237-256
[59]   TABLE FOR ESTIMATING THE GOODNESS OF FIT OF EMPIRICAL DISTRIBUTIONS [J].
SMIRNOV, N .
ANNALS OF MATHEMATICAL STATISTICS, 1948, 19 (02) :279-279
[60]   Complete phenomenological gravitational waveforms from spinning coalescing binaries [J].
Sturani, R. ;
Fischetti, S. ;
Cadonati, L. ;
Guidi, G. M. ;
Healy, J. ;
Shoemaker, D. ;
Vicere, A. .
14TH GRAVITATIONAL WAVES DATA ANALYSIS WORKSHOP, 2010, 243