Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances

被引:110
作者
Chen, Mengting [1 ]
Zhang, Ling [1 ]
Duan, Shasha [1 ]
Jing, Shilong [1 ]
Jiang, Hao [1 ]
Luo, Meifang [1 ]
Li, Chunzhong [1 ]
机构
[1] E China Univ Sci & Technol, Key Lab Ultrafine Mat, Minist Educ, Sch Mat Sci & Engn, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON NANOTUBES; STRETCHABLE ELECTRONICS; EPOXY COMPOSITES; FOAM COMPOSITES; NANOCOMPOSITES; FIBERS; MATRIX; DEVICES;
D O I
10.1039/c3nr06092f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
New flexible and conductive materials (FCMs) comprising a quartz fiber cloth (QFC) reinforced multi-walled carbon nanotubes (MWCNTs)-carbon aerogel (QMCA) and poly(dimethylsiloxane) (PDMS) have been successfully prepared. The QMCA-PDMS composite with a very low loading of MWCNTs (similar to 1.6 wt%) demonstrates enhanced performance in tensile strength (129.6 MPa), modulus (3.41 GPa) and electromagnetic interference (EMI) shielding efficiency (SE) (similar to 16 dB in X-band (8.2-12.4 GHz) region). Compared to the QC (where MWCNTs were simply deposited on the QFCs without forming aerogel networks) based PDMS composite, a similar to 120%, 330% and 178% increase of tensile strength, modulus, and EMI SE was obtained, respectively. Moreover, the EMI SE of the QMCA-PDMS composite can further reach 20 dB (a SE level needed for commercial applications) with only 2 wt% MWCNTs. Furthermore, the conductivity of the QMCA-PDMS laminate can reach 1.67 S cm(-1) even with very low MWCNTs (1.6 wt%), which still remains constant even after 5000 times bending and exhibits an increase of similar to 170% than that of MWCNT-carbon aerogel (MCA)-PDMS at 20% strain. Such intriguing performances are mainly attributed to their unique networks in QMCA-PDMS composites. In addition, these features can also protect electronics against harm from external forces and EMI, giving the brand-new FCMs huge potential in next-generation devices, like E-skin, robot joints and so on.
引用
收藏
页码:3796 / 3803
页数:8
相关论文
共 36 条
[1]   EMI shielding effectiveness of carbon based nanostructured polymeric materials: A comparative study [J].
Al-Saleh, Mohammed H. ;
Saadeh, Walaa H. ;
Sundararaj, Uttandaraman .
CARBON, 2013, 60 :146-156
[2]   Electromagnetic interference shielding mechanisms of CNT/polymer composites [J].
Al-Saleh, Mohammed H. ;
Sundararaj, Uttandaraman .
CARBON, 2009, 47 (07) :1738-1746
[3]   Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate [J].
Arjmand, Mohammad ;
Mahmoodi, Mehdi ;
Gelves, Genaro A. ;
Park, Simon ;
Sundararaj, Uttandaraman .
CARBON, 2011, 49 (11) :3430-3440
[4]   Short shaped copper fibers in an epoxy matrix: Their role in a multifunctional composite [J].
Bagwell, RM ;
McManaman, JM ;
Wetherhold, RC .
COMPOSITES SCIENCE AND TECHNOLOGY, 2006, 66 (3-4) :522-530
[5]   TUNNELING AND NONUNIVERSAL CONDUCTIVITY IN COMPOSITE-MATERIALS [J].
BALBERG, I .
PHYSICAL REVIEW LETTERS, 1987, 59 (12) :1305-1308
[6]   Electrical properties and electromagnetic interference shielding effectiveness of multiwalled carbon nanotubes-reinforced EMA nanocomposites [J].
Basuli, Utpal ;
Chattopadhyay, Santanu ;
Nah, Changwoon ;
Chaki, Tapan Kumar .
POLYMER COMPOSITES, 2012, 33 (06) :897-903
[7]   Flexible, aligned carbon nanotube/conducting polymer electrodes for a lithium-ion battery [J].
Chen, Jun ;
Liu, Yong ;
Minett, Andrew I. ;
Lynam, Carol ;
Wang, Jiazhao ;
Wallace, Gordon G. .
CHEMISTRY OF MATERIALS, 2007, 19 (15) :3595-3597
[8]   Highly conductive and stretchable polymer composites based on graphene/MWCNT network [J].
Chen, Mengting ;
Tao, Tao ;
Zhang, Ling ;
Gao, Wei ;
Li, Chunzhong .
CHEMICAL COMMUNICATIONS, 2013, 49 (16) :1612-1614
[9]   Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding [J].
Chen, Zongping ;
Xu, Chuan ;
Ma, Chaoqun ;
Ren, Wencai ;
Cheng, Hui-Ming .
ADVANCED MATERIALS, 2013, 25 (09) :1296-1300
[10]  
Chung D.D.L., 2003, COMPOSITE MAT FUNCTI, P91