Expressed Sequence Tags from loblolly pine embryos reveal similarities with angiosperm embryogenesis

被引:59
作者
Cairney, John
Zheng, Li
Cowels, Allison
Hsiao, Joseph
Zismann, Victoria
Liu, Jia
Ouyang, Shu
Thibaud-Nissen, Francoise
Hamilton, John
Childs, Kevin
Pullman, Gerald S.
Zhang, Yiting
Oh, Thomas
Buell, C. Robin
机构
[1] Inst Genom Res, Rockville, MD 20850 USA
[2] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Inst Paper Sci & Technol, Atlanta, GA 30332 USA
关键词
genomics; transcriptome; pine; plantembryogenesis; gymnosperm; EST;
D O I
10.1007/s11103-006-9035-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The process of embryogenesis in gymnosperms differs in significant ways from the more widely studied process in angiosperms. To further our understanding of embryogenesis in gymnosperms, we have generated Expressed Sequence Tags (ESTs) from four cDNA libraries constructed from un-normalized, normalized, and subtracted RNA populations of zygotic and somatic embryos of loblolly pine (Pinus taeda L.). A total of 68,721 ESTs were generated from 68,131 cDNA clones. Following clustering and assembly, these sequences collapsed into 5,274 contigs and 6,880 singleton sequences for a total of 12,154 non-redundant sequences. Searches of a non-identical amino acid database revealed a putative homolog for 9,189 sequences, leaving 2,965 sequences with no known function. More extensive searches of additional plant sequence data sets revealed a putative homolog for all but 1,388 (11.4%) of the sequences. Using gene ontologies, a known function could be assigned for 5,495 of the 12,154 total non-redundant sequences with 13,633 associations in total assigned. When compared to similar to 72,000 sequences in a collated P. taeda transcript assembly derived from > 245,000 ESTs derived from root, xylem, stem, needles, pollen cone, and shoot ESTs, 3,458 (28.5%) of the non-redundant embryo sequences were unique and thereby provide a valuable addition to development of a complete loblolly pine transcriptome. To assess similarities between angiosperm and gymnosperm embryo development, we examined our EST collection for putative homologs of angiosperm genes implicated in embryogenesis. Out of 108 angiosperm embryogenesis-related genes, homologs were present for 83 of these genes suggesting that pine contains similar genes for embryogenesis and that our RNA sampling methods were successful. We also identified sequences from the pine embryo transcriptome that have no known function and may contribute to the programming of gene expression and embryo development.
引用
收藏
页码:485 / 501
页数:17
相关论文
共 53 条
[1]   RAPID CDNA SEQUENCING (EXPRESSED SEQUENCE TAGS) FROM A DIRECTIONALLY CLONED HUMAN INFANT BRAIN CDNA LIBRARY [J].
ADAMS, MD ;
SOARES, MB ;
KERLAVAGE, AR ;
FIELDS, C ;
VENTER, JC .
NATURE GENETICS, 1993, 4 (04) :373-386
[2]   Assaying gene content in Arabidopsis [J].
Allen, KD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (14) :9568-9572
[3]   Analysis of xylem formation in pine by cDNA sequencing [J].
Allona, I ;
Quinn, M ;
Shoop, E ;
Swope, K ;
St Cyr, S ;
Carlis, J ;
Riedl, J ;
Retzel, E ;
Campbell, MM ;
Sederoff, R ;
Whetten, RW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (16) :9693-9698
[4]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[5]   EMBRYOGENY OF GYMNOSPERMS - ADVANCES IN SYNTHETIC SEED TECHNOLOGY OF CONIFERS [J].
ATTREE, SM ;
FOWKE, LC .
PLANT CELL TISSUE AND ORGAN CULTURE, 1993, 35 (01) :1-35
[6]   INITIATION OF EMBRYOGENIC CULTURES AND SOMATIC EMBRYO DEVELOPMENT IN LOBLOLLY-PINE (PINUS-TAEDA) [J].
BECWAR, MR ;
NAGMANI, R ;
WANN, SR .
CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE, 1990, 20 (06) :810-817
[7]  
Becwar MR., 1995, SOMATIC EMBRYOGENESI, P287, DOI DOI 10.1007/978-94-011-0960-4_18
[8]   Functional annotation of the Arabidopsis genome using controlled vocabularies [J].
Berardini, TZ ;
Mundodi, S ;
Reiser, L ;
Huala, E ;
Garcia-Hernandez, M ;
Zhang, PF ;
Mueller, LA ;
Yoon, J ;
Doyle, A ;
Lander, G ;
Moseyko, N ;
Yoo, D ;
Xu, I ;
Zoeckler, B ;
Montoya, M ;
Miller, N ;
Weems, D ;
Rhee, SY .
PLANT PHYSIOLOGY, 2004, 135 (02) :745-755
[9]  
Berleth T., 2002, ARABIDOPSIS BOOK
[10]   Normalization and subtraction: Two approaches to facilitate gene discovery [J].
Bonaldo, MDF ;
Lennon, G ;
Soares, MB .
GENOME RESEARCH, 1996, 6 (09) :791-806