Fractional diffusion: Exact representations of spectral functions

被引:44
作者
Metzler, R
Nonnenmacher, TF
机构
[1] Department of Mathematical Physics, University of Ulm
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 04期
关键词
D O I
10.1088/0305-4470/30/4/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For all the relevant transformed spaces, i.e. Fourier, Laplace and Fourier-Laplace. we present exact solutions of a fractional diffusion equation, describing random transport on fractals. The potential importance of such spectral representations lies in their applications to interpreting experimental measurements of anomalous diffusion processes. In contrast to the well known asymptotic results, the exact representations provide a much broader basis for comparison with data.
引用
收藏
页码:1089 / 1093
页数:5
相关论文
共 16 条
[1]   LOCALIZATION IN DISORDERED STRUCTURES - BREAKDOWN OF THE SELF-AVERAGING HYPOTHESIS [J].
BUNDE, A ;
DRAGER, J .
PHYSICAL REVIEW E, 1995, 52 (01) :53-56
[2]   FRACTIONAL DIFFUSION EQUATION FOR TRANSPORT PHENOMENA IN RANDOM-MEDIA [J].
GIONA, M ;
ROMAN, HE .
PHYSICA A, 1992, 185 (1-4) :87-97
[3]   FOX FUNCTION REPRESENTATION OF NON-DEBYE RELAXATION PROCESSES [J].
GLOCKLE, WG ;
NONNENMACHER, TF .
JOURNAL OF STATISTICAL PHYSICS, 1993, 71 (3-4) :741-757
[4]   DIFFUSION ON THE SIERPINSKI GASKETS - A RANDOM WALKER ON A FRACTALLY STRUCTURED OBJECT [J].
GUYER, RA .
PHYSICAL REVIEW A, 1984, 29 (05) :2751-2755
[5]   DIFFUSION IN DISORDERED MEDIA [J].
HAVLIN, S ;
BENAVRAHAM, D .
ADVANCES IN PHYSICS, 1987, 36 (06) :695-798
[6]  
KLAFTER J, 1991, J PHYS A, V25, P4835
[7]  
MATHAI AM, 1978, H FUNCTION APPLICATI
[8]   FRACTIONAL MODEL EQUATION FOR ANOMALOUS DIFFUSION [J].
METZLER, R ;
GLOCKLE, WG ;
NONNENMACHER, TF .
PHYSICA A, 1994, 211 (01) :13-24
[9]   ANALYTICAL SOLUTIONS FOR DIFFUSION ON FRACTAL OBJECTS [J].
OSHAUGHNESSY, B ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1985, 54 (05) :455-458
[10]   FRACTIONAL DIFFUSION EQUATION ON FRACTALS - 3-DIMENSIONAL CASE AND SCATTERING FUNCTION [J].
ROMAN, HE ;
GIONA, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (08) :2107-2117