An algebraic topological method for feature identification

被引:33
作者
Carlsson, Erik
Carlsson, Gunnar
De Silva, Vin
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[3] Pomona Coll, Dept Math, Claremont, CA 91711 USA
关键词
computational topology; singularities; point-cloud data;
D O I
10.1142/S021819590600204X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We develop a mathematical framework for describing local features of a geometric object-such as the edges of a square or the apex of a cone in terms of algebraic topological invariants. The main tool is the construction of a "tangent complex" for an arbitrary geometrical object, generalising the usual tangent bundle of a manifold. This framework can be used to develop algorithms for automatic feature location. We give several examples of applying such algorithms to geometric objects represented by point-cloud data sets.
引用
收藏
页码:291 / 314
页数:24
相关论文
共 19 条
[1]  
COLLINS A, 2004, EUR S POINT BAS GRAP
[2]  
de Silva V., 2004, S POINT BAS GRAPH
[3]  
DESILVA V, 2005, P ROB SCI SYST, V1
[4]   Shape dimension and approximation from samples [J].
Dey, TK ;
Giesen, J ;
Goswami, S ;
Zhao, WL .
DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 29 (03) :419-434
[5]  
DEY TK, 2004, EUR S POINT BAS GRAP, P193
[6]   Shape reconstruction with Delaunay complex (Invited paper) [J].
Edelsbrunner, H .
LATIN '98: THEORETICAL INFORMATICS, 1998, 1380 :119-132
[7]   Topological persistence and simplification [J].
Edelsbrunner, H ;
Letscher, D ;
Zomorodian, A .
DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 28 (04) :511-533
[8]  
FAN T, 1990, DESCRIBING RECOGNIZI
[9]  
Federer H., 2014, GEOMETRIC MEASURE TH
[10]  
Fisher R., 1989, SURFACES OBJECTS COM