Physiology of renal sodium transport

被引:112
作者
Greger, R [1 ]
机构
[1] Univ Freiburg, Inst Physiol, D-79104 Freiburg, Germany
关键词
renal tubule transport; diuretics; Na+ transport; Cl-; transport; HCO3-;
D O I
10.1097/00000441-200001000-00005
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
A wealth of studies performed with a spectrum of methods spanning simple clearance studies to the molecular identification of ion transporters has increased our understanding of how approximately 1.7 kg of NaCl and 180 L of H2O are absorbed by renal tubules in man and how the urinary excretion is fine-tuned to meet homeostatic requirements. This review will summarize our current understanding. In the proximal nephron, approximately 60 to 70% of the filtered Na+ and H2O is absorbed together with approximately 90% of the filtered HCO3-. The exact quantities are determined by many regulatory factors, such as glomerulotubular balance, angiotensin II, endothelin, sympathetic innervation, parathyroid hormone, dopamine, acid base status and others. The essential components of absorption are luminal membrane Na+/H+ exchange and the basolateral (Na+ + K+)-ATPase. In the thick ascending limb of the loop of Henle, 20 to 30% of the filtered NaCl is absorbed via Na(+)2Cl(-)K(+) cotransport driven by the basolateral (Na+ + K+)-ATPase. No H2O is absorbed at this nephron site. The transport rate is determined by the Na+ load and by several hormones and neurotransmitters, including prostaglandins, parathyroid hormone, glucagon, calcitonin, arginine vasopressin (AVP), and adrenaline. In the distal tubule, some 5 to 10% of the filtered load is absorbed via Na+Cl- cotransport in the luminal membrane driven by the basolateral (Na+ + K+)-ATPase. The rate of transport is again determined by the delivered load and by several hormones and neurotransmitters. One of the tasks of the collecting duct is to control the absorption of approximately 10 to 15% of the filtered H2O, regulated by AVP, and just a few percent of the filtered Na+, controlled by aldosterone and natriuretic hormone. The water absorption proceeds through the luminal membrane via aquaporin 2 and through the basolateral membrane via aquaporin 3 channels and is driven by the osmotic gradient built up by the counter current concentrating system. The Na+ absorption occurs via Na+ channels present in the luminal membrane driven by the basolateral (Na+ + K+)-ATPase. With no pharmacological interference, urinary excretion of Na+ can vary between less than 0.1% and no more than 3% of the filtered load, and that of H2O can vary between 0.3 and 15%.
引用
收藏
页码:51 / 62
页数:12
相关论文
共 94 条
[11]   EPITHELIAL SODIUM-CHANNEL RELATED TO PROTEINS INVOLVED IN NEURODEGENERATION [J].
CANESSA, CM ;
HORISBERGER, JD ;
ROSSIER, BC .
NATURE, 1993, 361 (6411) :467-470
[12]   BICARBONATE TRANSPORT ALONG THE LOOP OF HENLE .1. MICROPERFUSION STUDIES OF LOAD AND INHIBITOR SENSITIVITY [J].
CAPASSO, G ;
UNWIN, R ;
AGULIAN, S ;
GIEBISCH, G .
JOURNAL OF CLINICAL INVESTIGATION, 1991, 88 (02) :430-437
[13]   Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1 [J].
Chang, SS ;
Grunder, S ;
Hanukoglu, A ;
Rosler, A ;
Mathew, PM ;
Hanukoglu, I ;
Schild, L ;
Lu, Y ;
Shimkets, RA ;
NelsonWilliams, C ;
Rossier, BC ;
Lifton, RP .
NATURE GENETICS, 1996, 12 (03) :248-253
[14]  
Costanzo LS, 1992, KIDNEY PHYSL PATHOPH, P2375
[15]   INTERACTIONS AMONG PROSTAGLANDIN-E2, ANTI-DIURETIC HORMONE, AND CYCLIC ADENOSINE-MONOPHOSPHATE IN MODULATING CL- ABSORPTION IN SINGLE-MOUSE MEDULLARY THICK ASCENDING LIMBS OF HENLE [J].
CULPEPPER, RM ;
ANDREOLI, TE .
JOURNAL OF CLINICAL INVESTIGATION, 1983, 71 (06) :1588-1601
[16]   DIE ABHANGIGKEIT DES O2-VERBRAUCHS DER NIERE VON DER NA-RUCKRESORPTION [J].
DEETJEN, P ;
KRAMER, K .
PFLUGERS ARCHIV FUR DIE GESAMTE PHYSIOLOGIE DES MENSCHEN UND DER TIERE, 1961, 273 (06) :636-&
[17]   Mutations in the ROMK gene in antenatal Bartter syndrome are associated with impaired K+ channel function [J].
Derst, C ;
Konrad, M ;
Kockerling, A ;
Karolyi, L ;
Deschenes, G ;
Daut, J ;
Karschin, A ;
Seyberth, HW .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1997, 230 (03) :641-645
[18]  
DISTEFANO A, 1993, RENAL PHYSIOL BIOCH, V16, P157
[19]   Crypt base cells show forskolin induced Cl- secretion but no cation inward conductance [J].
Ecke, D ;
Bleich, M ;
Greger, R .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1996, 431 (03) :427-434
[20]   Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: A quantitative approach [J].
Firsov, D ;
Schild, L ;
Gautschi, I ;
Merillat, AM ;
Schneeberger, E ;
Rossier, BC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (26) :15370-15375