Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion

被引:419
作者
Narumiya, Shuh [1 ]
Tanji, Masahiro [1 ]
Ishizaki, Toshimasa [1 ]
机构
[1] Kyoto Univ, Fac Med, Dept Pharmacol, Kyoto 6068501, Japan
关键词
Rho; Rock; mDia; Ras; Src; GTP-BINDING PROTEIN; NUCLEOTIDE-EXCHANGE FACTORS; TUMOR-CELL INVASION; RAS TRANSFORMATION; MIGRATING CELLS; FOCAL ADHESIONS; ACTIN CYTOSKELETON; BONE-RESORPTION; LIVING CELLS; C-SRC;
D O I
10.1007/s10555-008-9170-7
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The Rho subgroup of the Rho GTPases consisting of RhoA, RhoB and RhoC induces a specific type of actin cytoskeleton and carry out a variety of functions in the cell. mDia and ROCK are downstream effectors of Rho mediating Rho action on the actin cytoskeleton; mDia produces actin filaments by nucleation and polymerization and ROCK activate myosin to cross-link them for induction of actomyosin bundles and contractility. mDia is potentially linked to Rac activation and membrane ruffle formation through c-Src-induced phosphorylation of focal adhesion proteins, and ROCK antagonizes this mDia action. Thus, cell morphogenesis, adhesion, and motility can be determined by the balance between mDia and ROCK activities. Though they are not oncogenes by themselves, overexpression of RhoA and RhoC are often found in clinical cancers, and RhoC has been repeatedly identified as a gene associated with metastasis. The Rho-ROCK pathway is implicated in Ras-mediated transformation, the amoeboid movement of tumor cells in the three-dimensional matrix, and transmigration of tumor cells through the mesothelial monolayer. On the other hand, the Rho-mDia1 pathway is implicated in Src-mediated remodeling of focal adhesions and migration of tumor cells. There is also an indication that the Rho pathway other than ROCK is involved in Src-mediated induction of podosome and regulation of matrix metalloproteases. Thus, Rho mediates various phenotypes of malignant transformation by Ras and Src through its effectors, ROCK and mDia.
引用
收藏
页码:65 / 76
页数:12
相关论文
共 84 条
[1]   INTRACELLULAR-LOCALIZATION OF THE P21(RHO) PROTEINS [J].
ADAMSON, P ;
PATERSON, HF ;
HALL, A .
JOURNAL OF CELL BIOLOGY, 1992, 119 (03) :617-627
[2]   A role for Cdc42 in macrophage chemotaxis [J].
Allen, WE ;
Zicha, D ;
Ridley, AJ ;
Jones, GE .
JOURNAL OF CELL BIOLOGY, 1998, 141 (05) :1147-1157
[3]   Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase) [J].
Amano, M ;
Ito, M ;
Kimura, K ;
Fukata, Y ;
Chihara, K ;
Nakano, T ;
Matsuura, Y ;
Kaibuchi, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (34) :20246-20249
[4]   Control of axon elongation via an SDF-1α/Rho/mDia pathway in cultured cerebellar granule neurons [J].
Arakawa, Y ;
Bito, H ;
Furuyashiki, T ;
Tsuji, T ;
Takemoto-Kimura, S ;
Kimura, K ;
Nozaki, K ;
Hashimoto, N ;
Narumiya, S .
JOURNAL OF CELL BIOLOGY, 2003, 161 (02) :381-391
[5]   RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity [J].
Arthur, WT ;
Burridge, K .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (09) :2711-2720
[6]   Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism [J].
Arthur, WT ;
Petch, LA ;
Burridge, K .
CURRENT BIOLOGY, 2000, 10 (12) :719-722
[7]   Active Rho is localized to podosomes induced by oncogenic Src and is required for their assembly and function [J].
Berdeaux, RL ;
Díaz, B ;
Kim, L ;
Martin, GS .
JOURNAL OF CELL BIOLOGY, 2004, 166 (03) :317-323
[8]   Models of the cooperative mechanism for Rho effector recognition - Implications for RhoA-mediated effector activation [J].
Blumenstein, L ;
Ahmadian, MR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (51) :53419-53426
[9]   Ral GTPases and cancer: linchpin support of the tumorigenic platform [J].
Bodemann, Brian O. ;
White, Michael A. .
NATURE REVIEWS CANCER, 2008, 8 (02) :133-140
[10]   Configuration of human dendritic cell cytoskeleton by Rho GTPases, the WAS protein, and differentiation [J].
Burns, S ;
Thrasher, AJ ;
Blundell, MP ;
Machesky, L ;
Jones, GE .
BLOOD, 2001, 98 (04) :1142-1149