Order parameter fluctuations and thermodynamic phase transitions in finite spin systems and fragmenting nuclei

被引:19
作者
Carmona, JM
Richert, J
Wagner, P
机构
[1] Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain
[2] Univ Strasbourg, Phys Theor Lab, Unite Rech Mixte Univ, CNRS,UMR7085, F-67084 Strasbourg, France
[3] Inst Rech Subatom, Unite Rech Mixte Univ, CNRS, UMR7500, F-67037 Strasbourg 2, France
关键词
order of phase transition; finite systems; nuclear fragmentation;
D O I
10.1016/S0370-2693(02)01369-2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that in small and low density systems described by a lattice gas model with fixed number of particles the location of a thermodynamic phase transition can be detected by means of the distribution of the fluctuations related to an order parameter which is chosen to be the size of the largest fragment, We show the correlation between the size of the system and the observed order of the transition. We discuss the implications of this correlation on the analysis of experimental fragmentation data. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:71 / 76
页数:6
相关论文
共 29 条
[1]   Phase diagram of d=4 Ising model with two couplings [J].
Alonso, JL ;
Carmona, JM ;
Gallardo, JC ;
Fernandez, LA ;
Iniguez, D ;
Tarancon, A ;
Ullod, CL .
PHYSICS LETTERS B, 1996, 376 (1-3) :148-153
[2]   Evidence for spinodal decomposition in nuclear multifragmentation [J].
Borderie, B ;
Tabacaru, G ;
Chomaz, P ;
Colonna, M ;
Guarnera, A ;
Pârlog, M ;
Rivet, MF ;
Auger, G ;
Bacri, CO ;
Bellaize, N ;
Bougault, R ;
Bouriquet, B ;
Brou, R ;
Buchet, P ;
Chbihi, A ;
Colin, J ;
Demeyer, A ;
Galichet, E ;
Gerlic, E ;
Guinet, D ;
Hudan, S ;
Lautesse, P ;
Lavaud, F ;
Laville, JL ;
Lecolley, JF ;
Leduc, C ;
Legrain, R ;
Le Neindre, N ;
Lopez, O ;
Louvel, M ;
Maskay, AM ;
Normand, J ;
Pawlowski, P ;
Rosato, E ;
Saint-Laurent, F ;
Steckmeyer, JC ;
Tamain, B ;
Tassan-Got, L ;
Vient, E ;
Wieleczko, JP .
PHYSICAL REVIEW LETTERS, 2001, 86 (15) :3252-3255
[3]   Nuclear liquid-gas phase transition within the lattice gas model [J].
Borg, J ;
Mishustin, IN ;
Bondorf, JP .
PHYSICS LETTERS B, 1999, 470 (1-4) :13-19
[4]   Universal features of the order-parameter fluctuations: Reversible and irreversible aggregation [J].
Botet, R ;
Ploszajczak, M .
PHYSICAL REVIEW E, 2000, 62 (02) :1825-1841
[5]   Clustering in supercritical nuclear matter: A lattice-gas approach [J].
Campi, X ;
Krivine, H .
NUCLEAR PHYSICS A, 1997, 620 (01) :46-54
[6]   SIGNALS OF A PHASE-TRANSITION IN NUCLEAR MULTIFRAGMENTATION [J].
CAMPI, X .
PHYSICS LETTERS B, 1988, 208 (3-4) :351-354
[7]   A model for nuclear matter fragmentation: phase diagram and cluster distributions [J].
Carmona, JM ;
Richert, J ;
Tarancon, A .
NUCLEAR PHYSICS A, 1998, 643 (02) :115-134
[8]   Finite size effects and the order of a phase transition in fragmenting nuclear systems [J].
Carmona, JM ;
Michel, N ;
Richert, J ;
Wagner, P .
PHYSICAL REVIEW C, 2000, 61 (03) :4
[9]   Experimental and theoretical search for a phase transition in nuclear fragmentation [J].
Chbihi, A ;
Schapiro, O ;
Salou, S ;
Gross, DHE .
EUROPEAN PHYSICAL JOURNAL A, 1999, 5 (03) :251-255
[10]   Negative heat capacity in the critical region of nuclear fragmentation: an experimental evidence of the liquid-gas phase transition [J].
D'Agostino, M ;
Gulminelli, F ;
Chomaz, P ;
Bruno, M ;
Cannata, F ;
Bougault, R ;
Gramegna, F ;
Iori, I ;
Le Neindre, N ;
Margagliotti, GV ;
Moroni, A ;
Vannini, G .
PHYSICS LETTERS B, 2000, 473 (3-4) :219-225