A feasibility study on the prediction of tumour location in the lung from skin motion

被引:63
作者
Ahn, S
Yi, B
Suh, Y
Kim, J
Lee, S
Shin, S
Shin, S
Choi, E
机构
[1] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Radiat Oncol, Seoul 138736, South Korea
[2] Ewha Womans Univ, Dept Phys, Seoul, South Korea
关键词
D O I
10.1259/bjr/64800801
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The system for predicting tumour location from skin motion induced by respiration was designed to reduce the effects of target movement. Fluoroscopic studies on 34 sites in the lungs and 14 sites in the diaphragm were performed so that the motions of skin markers and organs could be observed simultaneously. While patients were lying down in the simulator with radio-opaque markers on their skin, fluoroscopic images both in the anterior-posterior (AP) view and in the lateral view were sent to an analysing computer and recorded. The results that showed a strong correlation (0.77 +/- 0.12) between the patients' skin and tumour movement, especially for the sites located in the lower lung fields or in the diaphragm. With the prediction from skin motion, the uncertainties of the position of tumours due to respiratory movement could be reduced by up to 1.47 cm in the lower lung fields in the superior-inferior (SI) direction. This study revealed that it is possible to trace the exact location of tumours in the lungs by observing skin motion in most cases (up to 88%).
引用
收藏
页码:588 / 596
页数:9
相关论文
共 45 条
[1]   Improvement of CT-based treatment-planning models of abdominal targets using static exhale imaging [J].
Balter, JM ;
Lam, KL ;
McGinn, CJ ;
Lawrence, TS ;
Ten Haken, RK .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1998, 41 (04) :939-943
[2]   Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration [J].
Barnes, EIA ;
Murray, BR ;
Robinson, DM ;
Underwood, LJ ;
Hanson, J ;
Roa, WHY .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2001, 50 (04) :1091-1098
[3]  
Baroni G, 2000, Comput Aided Surg, V5, P296, DOI 10.3109/10929080009148897
[4]   Real-time three-dimensional motion analysis for patient positioning verification [J].
Baroni, G ;
Ferrigno, G ;
Orecchia, R ;
Pedotti, A .
RADIOTHERAPY AND ONCOLOGY, 2000, 54 (01) :21-27
[5]   Fluoroscopic study of tumor motion due to breathing: Facilitating precise radiation therapy for lung cancer patients [J].
Chen, QS ;
Weinhous, MS ;
Deibel, FC ;
Ciezki, JP ;
Macklis, RM .
MEDICAL PHYSICS, 2001, 28 (09) :1850-1856
[6]   ULTRASOUND QUANTITATION OF RESPIRATORY ORGAN MOTION IN THE UPPER ABDOMEN [J].
DAVIES, SC ;
HILL, AL ;
HOLMES, RB ;
HALLIWELL, M ;
JACKSON, PC .
BRITISH JOURNAL OF RADIOLOGY, 1994, 67 (803) :1096-1102
[7]   The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy [J].
Dawson, LA ;
Brock, KK ;
Kazanjian, S ;
Fitch, D ;
McGinn, CJ ;
Lawrence, TS ;
Ten Haken, RK ;
Balter, J .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2001, 51 (05) :1410-1421
[8]   Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC) [J].
Graham, MV ;
Purdy, JA ;
Emami, B ;
Harms, W ;
Bosch, W ;
Lockett, MA ;
Perez, CA .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1999, 45 (02) :323-329
[9]   Deep inspiration breath-hold technique for lung tumors: The potential value of target immobilization and reduced lung density in dose escalation [J].
Hanley, J ;
Debois, MM ;
Mah, D ;
Mageras, GS ;
Raben, A ;
Rosenzweig, K ;
Mychalczak, B ;
Schwartz, LH ;
Gloeggler, PJ ;
Lutz, W ;
Ling, CC ;
Leibel, SA ;
Fuks, Z ;
Kutcher, GJ .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1999, 45 (03) :603-611
[10]  
Kadiri L, 1998, RADIOTHER ONCOL, V48, P343