Application of tetranucleotide frequencies for the assignment of genomic fragments

被引:268
作者
Teeling, H [1 ]
Meyerdierks, A [1 ]
Bauer, M [1 ]
Amann, R [1 ]
Glöckner, FO [1 ]
机构
[1] Max Planck Inst Marine Microbiol, Dept Mol Ecol, Gen Grp, D-28359 Bremen, Germany
关键词
D O I
10.1111/j.1462-2920.2004.00624.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
A basic problem of the metagenomic approach in microbial ecology is the assignment of genomic fragments to a certain species or taxonomic group, when suitable marker genes are absent. Currently, the (G + C)-content together with phylogenetic information and codon adaptation for functional genes is mostly used to assess the relationship of different fragments. These methods, however, can produce ambiguous results. In order to evaluate sequence-based methods for fragment identification, we extensively compared (G + C)-contents and tetranucleotide usage patterns of 9054 fosmid-sized genomic fragments generated in silico from 118 completely sequenced bacterial genomes (40 982 931 fragment pairs were compared in total). The results of this systematic study show that the discriminatory power of correlations of tetranucleotide-derived z-scores is by far superior to that of differences in (G + C)-content and provides reasonable assignment probabilities when applied to metagenome libraries of small diversity. Using six fully sequenced fosmid inserts from a metagenomic analysis of microbial consortia mediating the anaerobic oxidation of methane (AOM), we demonstrate that discrimination based on tetranucleotide-derived z-score correlations was consistent with corresponding data from 16S ribosomal RNA sequence analysis and allowed us to discriminate between fosmid inserts that were indistinguishable with respect to their (G + C)-contents.
引用
收藏
页码:938 / 947
页数:10
相关论文
共 25 条
[1]   Informatics for unveiling hidden genome signatures [J].
Abe, T ;
Kanaya, S ;
Kinouchi, M ;
Ichiba, Y ;
Kozuki, T ;
Ikemura, T .
GENOME RESEARCH, 2003, 13 (04) :693-702
[2]   PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION [J].
AMANN, RI ;
LUDWIG, W ;
SCHLEIFER, KH .
MICROBIOLOGICAL REVIEWS, 1995, 59 (01) :143-169
[3]   Bacterial rhodopsin:: Evidence for a new type of phototrophy in the sea [J].
Béjà, O ;
Aravind, L ;
Koonin, EV ;
Suzuki, MT ;
Hadd, A ;
Nguyen, LP ;
Jovanovich, S ;
Gates, CM ;
Feldman, RA ;
Spudich, JL ;
Spudich, EN ;
DeLong, EF .
SCIENCE, 2000, 289 (5486) :1902-1906
[4]   Proteorhodopsin phototrophy in the ocean [J].
Béjà, O ;
Spudich, EN ;
Spudich, JL ;
Leclerc, M ;
DeLong, EF .
NATURE, 2001, 411 (6839) :786-789
[5]   Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage [J].
Béjà, O ;
Suzuki, MT ;
Koonin, EV ;
Aravind, L ;
Hadd, A ;
Nguyen, LP ;
Villacorta, R ;
Amjadi, M ;
Garrigues, C ;
Jovanovich, SB ;
Feldman, RA ;
DeLong, EF .
ENVIRONMENTAL MICROBIOLOGY, 2000, 2 (05) :516-529
[6]   A marine microbial consortium apparently mediating anaerobic oxidation of methane [J].
Boetius, A ;
Ravenschlag, K ;
Schubert, CJ ;
Rickert, D ;
Widdel, F ;
Gieseke, A ;
Amann, R ;
Jorgensen, BB ;
Witte, U ;
Pfannkuche, O .
NATURE, 2000, 407 (6804) :623-626
[7]   Estimating prokaryotic diversity and its limits [J].
Curtis, TP ;
Sloan, WT ;
Scannell, JW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (16) :10494-10499
[8]   Microbial population genomics and ecology [J].
DeLong, EF .
CURRENT OPINION IN MICROBIOLOGY, 2002, 5 (05) :520-524
[9]   Genomic signature: Characterization and classification of species assessed by chaos game representation of sequences [J].
Deschavanne, PJ ;
Giron, A ;
Vilain, J ;
Fagot, G ;
Fertil, B .
MOLECULAR BIOLOGY AND EVOLUTION, 1999, 16 (10) :1391-1399
[10]   Genome-scale compositional comparisons in eukaryotes [J].
Gentles, AJ ;
Karlin, S .
GENOME RESEARCH, 2001, 11 (04) :540-546