Towards a virtual fly brain

被引:12
作者
Armstrong, J. Douglas [1 ]
van Hemert, Jano I. [2 ]
机构
[1] Univ Edinburgh, Sch Informat, Inst Adapt & Neural Computat, Edinburgh EH8 9AB, Midlothian, Scotland
[2] Univ Edinburgh, Sch Informat, Natl E Sci Ctr, Edinburgh EH8 9AA, Midlothian, Scotland
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2009年 / 367卷 / 1896期
基金
英国工程与自然科学研究理事会;
关键词
Drosophila melanogaster; eScience; virtual brain; neuroinformatics; brain; DROSOPHILA; EXPRESSION; SYSTEM; TOOLS;
D O I
10.1098/rsta.2008.0308
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Models of the brain that simulate sensory input, behavioural output and information processing in a biologically plausible manner pose significant challenges to both computer science and biology. Here we investigated strategies that could be used to create a model of the insect brain, specifically that of Drosophila melanogaster that is very widely used in laboratory research. The scale of the problem is an order of magnitude above the most complex of the current simulation projects, and it is further constrained by the relative sparsity of available electrophysiological recordings from the fly nervous system. However fly brain research at the anatomical and behavioural levels offers some interesting opportunities that could be exploited to create a functional simulation. We propose to exploit these strengths of Drosophila central nervous system research to focus on a functional model that maps biologically plausible network architecture onto phenotypic data from neuronal inhibition and stimulation studies, leaving aside biophysical modelling of individual neuronal activity for future models until more data are available.
引用
收藏
页码:2387 / 2397
页数:11
相关论文
共 37 条
  • [1] Drosophila as a model for human neurodegenerative disease
    Bilen, J
    Bonini, NM
    [J]. ANNUAL REVIEW OF GENETICS, 2005, 39 : 153 - 171
  • [2] Homophila:: human disease gene cognates in Drosophila
    Chien, S
    Reiter, LT
    Bier, E
    Gribskov, M
    [J]. NUCLEIC ACIDS RESEARCH, 2002, 30 (01) : 149 - 151
  • [3] Physiology and biochemistry of Drosophila learning mutants
    Davis, RL
    [J]. PHYSIOLOGICAL REVIEWS, 1996, 76 (02) : 299 - 317
  • [4] Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure
    Denk, W
    Horstmann, H
    [J]. PLOS BIOLOGY, 2004, 2 (11) : 1900 - 1909
  • [5] A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila
    Dietzl, Georg
    Chen, Doris
    Schnorrer, Frank
    Su, Kuan-Chung
    Barinova, Yulia
    Fellner, Michaela
    Gasser, Beate
    Kinsey, Kaolin
    Oppel, Silvia
    Scheiblauer, Susanne
    Couto, Africa
    Marra, Vincent
    Keleman, Krystyna
    Dickson, Barry J.
    [J]. NATURE, 2007, 448 (7150) : 151 - U1
  • [6] Dorigo M., 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), P1470, DOI 10.1109/CEC.1999.782657
  • [7] Gene discovery in Drosophila:: New insights for learning and memory
    Dubnau, J
    Tully, T
    [J]. ANNUAL REVIEW OF NEUROSCIENCE, 1998, 21 : 407 - 444
  • [8] Elliott David A., 2008, V420, P79, DOI 10.1007/978-1-59745-583-1_5
  • [9] Evolutionary expansion and anatomical specialization of synapse proteome complexity
    Emes, Richard D.
    Pocklington, Andrew J.
    Anderson, Christopher N. G.
    Bayes, Alex
    Collins, Mark O.
    Vickers, Catherine A.
    Croning, Mike D. R.
    Malik, Bilal R.
    Choudhary, Jyoti S.
    Armstrong, J. Douglas
    Grant, Seth G. N.
    [J]. NATURE NEUROSCIENCE, 2008, 11 (07) : 799 - 806
  • [10] Neural network based pattern matching and spike detection tools and services - in the CARMEN neuroinformatics project
    Fletcher, Martyn
    Liang, Bojian
    Smith, Leslie
    Knowles, Alastair
    Jackson, Tom
    Jessop, Mark
    Austin, Jim
    [J]. NEURAL NETWORKS, 2008, 21 (08) : 1076 - 1084