Dynamic scaling of the width distribution in Edwards-Wilkinson type models of interface dynamics

被引:30
作者
Antal, T
Racz, Z
机构
[1] Institute for Theoretical Physics, Eötvös University, Budapest, 1088
关键词
D O I
10.1103/PhysRevE.54.2256
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Edwards-Wilkinson type models are studied in 1+1 dimensions and the time-dependent distribution P-L(w(2),t) of the square of the width of an interface w(2) is calculated for systems of size L. We find that, using a flat interface as an initial condition, P-L(w(2),t) can be calculated exactly and it obeys scaling in the form [w(2)]P-infinity(L)(w(2),t) = Phi(w(2)/[w(2)](infinity),t/L(2)), where [w(2)](infinity) is the stationary value of w(2). For more complicated initial stares, scaling is observed only in the large-time limit and the scaling function depends on the initial amplitude of the longest wavelength mode. The short-time limit is also interesting since P-L(w(2),t) is found to closely approximate the log-normal distribution. These results are confirmed by Monte Carlo simulations on a singlestep, solid-on-solid type model (roof-top model) of surface evolution.
引用
收藏
页码:2256 / 2260
页数:5
相关论文
共 13 条
  • [1] Aitchison J, 1963, LOGNORMAL DISTRIBUTI
  • [2] THE SURFACE STATISTICS OF A GRANULAR AGGREGATE
    EDWARDS, SF
    WILKINSON, DR
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 381 (1780): : 17 - 31
  • [3] SCALING OF THE ACTIVE ZONE IN THE EDEN PROCESS ON PERCOLATION NETWORKS AND THE BALLISTIC DEPOSITION MODEL
    FAMILY, F
    VICSEK, T
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (02): : L75 - L81
  • [4] WIDTH DISTRIBUTION FOR RANDOM-WALK INTERFACES
    FOLTIN, G
    OERDING, K
    RACZ, Z
    WORKMAN, RL
    ZIA, RKP
    [J]. PHYSICAL REVIEW E, 1994, 50 (02) : R639 - R642
  • [5] DYNAMIC SCALING OF GROWING INTERFACES
    KARDAR, M
    PARISI, G
    ZHANG, YC
    [J]. PHYSICAL REVIEW LETTERS, 1986, 56 (09) : 889 - 892
  • [6] KRUG J, 1991, SOLIDS EQUILIBRIUM G
  • [7] BALLISTIC DEPOSITION ON SURFACES
    MEAKIN, P
    RAMANLAL, P
    SANDER, LM
    BALL, RC
    [J]. PHYSICAL REVIEW A, 1986, 34 (06): : 5091 - 5103
  • [8] MAXIMUM-ENTROPY FORMALISM, FRACTALS, SCALING PHENOMENA, AND 1/F NOISE - A TALE OF TAILS
    MONTROLL, EW
    SHLESINGER, MF
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1983, 32 (02) : 209 - 230
  • [9] WIDTH DISTRIBUTION OF CURVATURE-DRIVEN INTERFACES - A STUDY OF UNIVERSALITY
    PLISCHKE, M
    RACZ, Z
    ZIA, RKP
    [J]. PHYSICAL REVIEW E, 1994, 50 (05): : 3589 - 3593
  • [10] PLISCHKE M, 1986, PHYS REV B, V35, P7