Calculation of the radiative cooling coefficient for molybdenum in a low density plasma

被引:34
作者
Fournier, KB
Pacella, D
May, MJ
Finkenthal, M
Goldstein, WH
机构
[1] EURATOM,ENEA FUS,CTR RIC FRASCATI,FRASCATI,ITALY
[2] JOHNS HOPKINS UNIV,DEPT PHYS & ASTRON,BALTIMORE,MD 21218
关键词
D O I
10.1088/0029-5515/37/6/I09
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The radiative cooling coefficient for molybdenum (Z = 42) in a low density (n(e) less than or equal to 10(15) cm(-3)) plasma is calculated. First, the molybdenum charge state distribution (CSD) is computed using the best available atomic physics data for ground state recombination and ionization, including the rates of excitation-autoionization for Mo6+ to Mo13+ and Mo23+ to Mo32+. The emissivities of Mo4+ to Mo41+ are then found using a collisional-radiative model such that the contributions from metastable levels to an ion's emissivity are taken into account. The CSD and the radiative emissivity for all molybdenum ions are combined to yield the total radiative cooling coefficient for molybdenum in a low density plasma. A radiative loss coefficient over 2 orders of magnitude smaller than that predicted by an 'average ion' model for temperatures relevant to tokamak divertor and scrape-off layer plasmas (T-e less than or similar to 50 eV) is found. The cooling coefficient of the present work varies from a factor of 2 smaller to a factor of 2 larger than that predicted by the 'average ion' model for all other plasma temperatures. The coefficient calculated in the present work is benchmarked against the measured bolometric loss profile from a molybdenum dominated shot in the Frascati Tokamak Upgrade (FTU).
引用
收藏
页码:825 / 834
页数:10
相关论文
共 36 条
[1]   PLASMA CHARACTERISTICS IN FTU WITH DIFFERENT PLASMA-FACING MATERIALS [J].
ALLADIO, F ;
APICELLA, ML ;
APRUZZESE, G ;
BARTIROMO, R ;
BORRA, M ;
BRACCO, G ;
BUCETI, G ;
BURATTI, P ;
CENTIOLI, C ;
CIOTTI, M ;
COCILOVO, V ;
CONDREA, I ;
CRISANTI, F ;
DEANGELIS, R ;
ESPOSITO, B ;
FERRO, C ;
FRANZONI, G ;
FRIGIONE, D ;
GABELLIERI, L ;
GIOVANNOZZI, E ;
GRANUCCI, G ;
GROLLI, M ;
IMPARATO, A ;
KROEGLER, H ;
LEIGHEB, M ;
LOVISETTO, L ;
MADDALUNO, G ;
MAZZITELLI, G ;
MICOZZI, P ;
MOLETI, A ;
ORSITTO, F ;
PANACCIONE, L ;
PACELLA, D ;
PANELLA, M ;
PERICOLI, V ;
PIERONI, L ;
PODDA, S ;
RIGHETTI, GB ;
ROMANELLI, F ;
SEGRE, SE ;
STERNINI, E ;
TUCCILLO, AA ;
TUDISCO, O ;
VALENTE, F ;
VITALE, V ;
ZAGORSKI, R ;
ZANZA, V ;
ZERBINI, M .
PLASMA PHYSICS AND CONTROLLED FUSION, 1994, 36 (12B) :B253-B261
[2]   A DESIGN STUDY FOR AN ADVANCED DIVERTOR FOR DIII-D AND ITER - THE RADIATIVE SLOT DIVERTOR [J].
ALLEN, SL ;
RENSINK, ME ;
HILL, DN ;
WOOD, R ;
NILSON, D ;
LOGAN, BG ;
STAMBAUGH, R ;
PETRIE, TW ;
STAEBLER, GM ;
MAHDAVI, MA ;
HULSE, R ;
CAMPBELL, RB .
JOURNAL OF NUCLEAR MATERIALS, 1992, 196 :804-809
[3]   NEW ENGINEERING ASPECTS OF HIGH-FIELD TOKAMAKS [J].
ANDREANI, R .
FUSION ENGINEERING AND DESIGN, 1993, 22 (1-2) :129-141
[4]   ELECTRON COLLISION EXCITATIONS IN COMPLEX SPECTRA OF IONIZED HEAVY-ATOMS [J].
BARSHALOM, A ;
KLAPISCH, M ;
OREG, J .
PHYSICAL REVIEW A, 1988, 38 (04) :1773-1784
[5]   DIELECTRONIC RECOMBINATION + TEMPERATURE OF SOLAR CORONA [J].
BURGESS, A .
ASTROPHYSICAL JOURNAL, 1964, 139 (02) :776-&
[7]   RADIATION RATES FOR LOW-Z IMPURITIES IN EDGE PLASMAS [J].
CLARK, R ;
ABDALLAH, J ;
POST, D .
JOURNAL OF NUCLEAR MATERIALS, 1995, 220 :1028-1032
[8]  
CORMACK AM, 1963, J APPL PHYS, V34
[9]   POWER RADIATED FROM ITER BY IMPURITIES [J].
CUMMINGS, J ;
COHEN, SA ;
HULSE, R ;
POST, DE ;
REDI, MH ;
PERKINS, J .
JOURNAL OF NUCLEAR MATERIALS, 1990, 176 (176-77) :916-921
[10]   Collisional-radiative modeling of the L-shell emission of Mo30+ to Mo33+ emitted from a high-temperature low-density tokamak plasma [J].
Fournier, KB ;
Goldstein, WH ;
Pacella, D ;
Bartiromo, R ;
Finkenthal, M ;
May, M .
PHYSICAL REVIEW E, 1996, 53 (01) :1084-1093